Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
451770.a1 |
451770a1 |
451770.a |
451770a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{2} \cdot 3^{11} \cdot 5^{10} \cdot 11^{3} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$19.20989103$ |
$1$ |
|
$0$ |
$548570880$ |
$4.159996$ |
$15895003002025736951/9210260039062500$ |
$1.05979$ |
$5.61403$ |
$[1, 1, 0, 796251442, 309591097512]$ |
\(y^2+xy=x^3+x^2+796251442x+309591097512\) |
132.2.0.? |
$[(427989169/653, 293194673312884/653)]$ |
451770.b1 |
451770b1 |
451770.b |
451770b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{2} \cdot 3^{7} \cdot 5^{6} \cdot 11^{2} \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$62657280$ |
$3.144569$ |
$-527834927164249/16539187500$ |
$0.93065$ |
$4.82607$ |
$[1, 1, 0, -25593483, -51177955527]$ |
\(y^2+xy=x^3+x^2-25593483x-51177955527\) |
6.2.0.a.1 |
$[ ]$ |
451770.c1 |
451770c6 |
451770.c |
451770c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{8} \cdot 11 \cdot 37^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$30.64067222$ |
$1$ |
|
$2$ |
$77856768$ |
$3.267220$ |
$553808571467029327441/12529687500$ |
$1.04740$ |
$5.33210$ |
$[1, 1, 0, -234215393, -1379754999687]$ |
\(y^2+xy=x^3+x^2-234215393x-1379754999687\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.by.1, 44.12.0.h.1, $\ldots$ |
$[(203746/3, 59588131/3), (27876, 3694683)]$ |
451770.c2 |
451770c3 |
451770.c |
451770c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{4} \cdot 3^{3} \cdot 5 \cdot 11^{8} \cdot 37^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$7.660168055$ |
$1$ |
|
$10$ |
$38928384$ |
$2.920647$ |
$182864522286982801/463015182960$ |
$1.07501$ |
$4.71649$ |
$[1, 1, 0, -16188453, 25008455133]$ |
\(y^2+xy=x^3+x^2-16188453x+25008455133\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.by.2, 40.24.0.cb.2, $\ldots$ |
$[(2078, 17595), (2753, 34902)]$ |
451770.c3 |
451770c4 |
451770.c |
451770c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 5^{4} \cdot 11^{2} \cdot 37^{6} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$48840$ |
$192$ |
$1$ |
$30.64067222$ |
$1$ |
|
$8$ |
$38928384$ |
$2.920647$ |
$135670761487282321/643043610000$ |
$1.02017$ |
$4.69356$ |
$[1, 1, 0, -14655173, -21511566723]$ |
\(y^2+xy=x^3+x^2-14655173x-21511566723\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0.h.1, 40.24.0.i.2, 44.24.0.c.1, $\ldots$ |
$[(-2143, 8726), (-18857/3, 64822/3)]$ |
451770.c4 |
451770c5 |
451770.c |
451770c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{2} \cdot 3^{24} \cdot 5^{2} \cdot 11 \cdot 37^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$30.64067222$ |
$1$ |
|
$4$ |
$77856768$ |
$3.267220$ |
$-15595206456730321/310672490129100$ |
$1.05689$ |
$4.80140$ |
$[1, 1, 0, -7125673, -43577519423]$ |
\(y^2+xy=x^3+x^2-7125673x-43577519423\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 22.6.0.a.1, 40.24.0.cb.1, $\ldots$ |
$[(4196, 18437), (54451/3, 9831937/3)]$ |
451770.c5 |
451770c2 |
451770.c |
451770c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 11^{4} \cdot 37^{6} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$48840$ |
$192$ |
$1$ |
$7.660168055$ |
$1$ |
|
$16$ |
$19464192$ |
$2.574070$ |
$119102750067601/68309049600$ |
$1.06441$ |
$4.15305$ |
$[1, 1, 0, -1403253, 59908653]$ |
\(y^2+xy=x^3+x^2-1403253x+59908653\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0.h.2, 40.24.0.i.1, 60.24.0.c.1, $\ldots$ |
$[(-774, 26523), (-422, 24235)]$ |
451770.c6 |
451770c1 |
451770.c |
451770c |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{16} \cdot 3^{3} \cdot 5 \cdot 11^{2} \cdot 37^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$30.64067222$ |
$1$ |
|
$5$ |
$9732096$ |
$2.227497$ |
$1833318007919/1070530560$ |
$1.04706$ |
$3.83250$ |
$[1, 1, 0, 349067, 7689517]$ |
\(y^2+xy=x^3+x^2+349067x+7689517\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 30.6.0.a.1, 48.24.0.f.2, $\ldots$ |
$[(234, 9995), (109178/13, 48580199/13)]$ |
451770.d1 |
451770d2 |
451770.d |
451770d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3^{8} \cdot 5^{2} \cdot 11 \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16280$ |
$12$ |
$0$ |
$1.838615680$ |
$1$ |
|
$4$ |
$645120$ |
$0.959999$ |
$220020692653/3608550$ |
$0.88971$ |
$2.83772$ |
$[1, 1, 0, -4653, 118503]$ |
\(y^2+xy=x^3+x^2-4653x+118503\) |
2.3.0.a.1, 440.6.0.?, 740.6.0.?, 3256.6.0.?, 16280.12.0.? |
$[(89, 603)]$ |
451770.d2 |
451770d1 |
451770.d |
451770d |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3^{4} \cdot 5 \cdot 11^{2} \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$16280$ |
$12$ |
$0$ |
$0.919307840$ |
$1$ |
|
$7$ |
$322560$ |
$0.613425$ |
$433798093/196020$ |
$0.84923$ |
$2.35934$ |
$[1, 1, 0, -583, -2783]$ |
\(y^2+xy=x^3+x^2-583x-2783\) |
2.3.0.a.1, 370.6.0.?, 440.6.0.?, 3256.6.0.?, 16280.12.0.? |
$[(-11, 55)]$ |
451770.e1 |
451770e1 |
451770.e |
451770e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{21} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$48840$ |
$24$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$7185024$ |
$2.081699$ |
$16286046682042333/9420668928000$ |
$1.20597$ |
$3.69880$ |
$[1, 1, 0, -195388, -777008]$ |
\(y^2+xy=x^3+x^2-195388x-777008\) |
3.6.0.b.1, 111.12.0.?, 1320.12.0.?, 48840.24.1.? |
$[ ]$ |
451770.f1 |
451770f1 |
451770.f |
451770f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{29} \cdot 3^{5} \cdot 5 \cdot 11^{6} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$135.0748135$ |
$1$ |
|
$0$ |
$1279359360$ |
$4.579758$ |
$4040595218122385688649/1155585977226362880$ |
$1.00864$ |
$6.03936$ |
$[1, 1, 0, -5044039458, -98065346110092]$ |
\(y^2+xy=x^3+x^2-5044039458x-98065346110092\) |
120.2.0.? |
$[(1168622368884370675061269807737827115871744359198958141869881/3642065428910280989491834891, 572287169686246594657606488648628709027861360554689985576368649271926442825660994694552908/3642065428910280989491834891)]$ |
451770.g1 |
451770g1 |
451770.g |
451770g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3^{7} \cdot 5^{9} \cdot 11 \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$48840$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$66189312$ |
$3.011459$ |
$214965934543825921/3476988281250$ |
$0.93566$ |
$4.72891$ |
$[1, 1, 0, -17085148, -26806244042]$ |
\(y^2+xy=x^3+x^2-17085148x-26806244042\) |
48840.2.0.? |
$[ ]$ |
451770.h1 |
451770h1 |
451770.h |
451770h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{10} \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.908906241$ |
$1$ |
|
$4$ |
$725760$ |
$0.618400$ |
$-87047569/9292800$ |
$0.90220$ |
$2.35979$ |
$[1, 1, 0, -102, -5484]$ |
\(y^2+xy=x^3+x^2-102x-5484\) |
6.2.0.a.1 |
$[(92, 834)]$ |
451770.i1 |
451770i1 |
451770.i |
451770i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{3} \cdot 3^{5} \cdot 5^{11} \cdot 11^{2} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.717623904$ |
$1$ |
|
$6$ |
$7032960$ |
$2.098408$ |
$49157469539967484369/11485546875000$ |
$0.98588$ |
$4.03684$ |
$[1, 1, 0, -847402, -300542276]$ |
\(y^2+xy=x^3+x^2-847402x-300542276\) |
120.2.0.? |
$[(-537, 406), (1113, 11131)]$ |
451770.j1 |
451770j1 |
451770.j |
451770j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{10} \cdot 3^{17} \cdot 5^{2} \cdot 11^{5} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$335865600$ |
$4.010277$ |
$-3470373537504830811203247721/532432701217612800$ |
$1.05959$ |
$5.97943$ |
$[1, 1, 0, -3888837557, 93340545718701]$ |
\(y^2+xy=x^3+x^2-3888837557x+93340545718701\) |
132.2.0.? |
$[ ]$ |
451770.k1 |
451770k1 |
451770.k |
451770k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{19} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$48840$ |
$2$ |
$0$ |
$3.613462680$ |
$1$ |
|
$2$ |
$44914176$ |
$3.023594$ |
$4397152681594331569/80019456000$ |
$0.95008$ |
$4.96071$ |
$[1, 1, 0, -46725367, 122914067221]$ |
\(y^2+xy=x^3+x^2-46725367x+122914067221\) |
48840.2.0.? |
$[(1347, 249169)]$ |
451770.l1 |
451770l1 |
451770.l |
451770l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3^{3} \cdot 5^{7} \cdot 11 \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$48840$ |
$2$ |
$0$ |
$7.224034001$ |
$1$ |
|
$0$ |
$49230720$ |
$3.207119$ |
$410454016413013/46406250$ |
$0.94399$ |
$5.08002$ |
$[1, 1, 0, -78424562, -267323373414]$ |
\(y^2+xy=x^3+x^2-78424562x-267323373414\) |
48840.2.0.? |
$[(-5612327/33, 55500073/33)]$ |
451770.m1 |
451770m3 |
451770.m |
451770m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3^{4} \cdot 5^{12} \cdot 11 \cdot 37^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48840$ |
$48$ |
$0$ |
$2.176924207$ |
$1$ |
|
$4$ |
$37822464$ |
$3.039066$ |
$42511837711807729/16097167968750$ |
$0.93877$ |
$4.60444$ |
$[1, 1, 0, -9954027, 7102912599]$ |
\(y^2+xy=x^3+x^2-9954027x+7102912599\) |
2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 120.12.0.?, 296.12.0.?, $\ldots$ |
$[(2753, 22581)]$ |
451770.m2 |
451770m2 |
451770.m |
451770m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{6} \cdot 11^{2} \cdot 37^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$48840$ |
$48$ |
$0$ |
$4.353848414$ |
$1$ |
|
$6$ |
$18911232$ |
$2.692493$ |
$3627347927618449/93177562500$ |
$1.01346$ |
$4.41541$ |
$[1, 1, 0, -4382197, -3453476519]$ |
\(y^2+xy=x^3+x^2-4382197x-3453476519\) |
2.6.0.a.1, 44.12.0-2.a.1.1, 120.12.0.?, 296.12.0.?, 1320.24.0.?, $\ldots$ |
$[(2617, 53554)]$ |
451770.m3 |
451770m1 |
451770.m |
451770m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{4} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 37^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48840$ |
$48$ |
$0$ |
$8.707696829$ |
$1$ |
|
$3$ |
$9455616$ |
$2.345921$ |
$3559780767858769/2442000$ |
$0.91231$ |
$4.41397$ |
$[1, 1, 0, -4354817, -3499677531]$ |
\(y^2+xy=x^3+x^2-4354817x-3499677531\) |
2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 120.12.0.?, 296.12.0.?, $\ldots$ |
$[(16483, 2090166)]$ |
451770.m4 |
451770m4 |
451770.m |
451770m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2 \cdot 3 \cdot 5^{3} \cdot 11^{4} \cdot 37^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$48840$ |
$48$ |
$0$ |
$8.707696829$ |
$1$ |
|
$0$ |
$37822464$ |
$3.039066$ |
$18297480921551/20579693400750$ |
$1.09662$ |
$4.59069$ |
$[1, 1, 0, 751553, -11052453269]$ |
\(y^2+xy=x^3+x^2+751553x-11052453269\) |
2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 120.12.0.?, 296.12.0.?, $\ldots$ |
$[(114543/7, 19847542/7)]$ |
451770.n1 |
451770n1 |
451770.n |
451770n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{6} \cdot 3 \cdot 5^{4} \cdot 11 \cdot 37^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$9768$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10506240$ |
$2.276978$ |
$4011342040369/1807080000$ |
$0.88369$ |
$3.89263$ |
$[1, 1, 0, -453167, 55078821]$ |
\(y^2+xy=x^3+x^2-453167x+55078821\) |
2.3.0.a.1, 66.6.0.a.1, 296.6.0.?, 9768.12.0.? |
$[ ]$ |
451770.n2 |
451770n2 |
451770.n |
451770n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{8} \cdot 11^{2} \cdot 37^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$9768$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$21012480$ |
$2.623550$ |
$167749090607951/125915625000$ |
$0.91456$ |
$4.17935$ |
$[1, 1, 0, 1572953, 414512509]$ |
\(y^2+xy=x^3+x^2+1572953x+414512509\) |
2.3.0.a.1, 132.6.0.?, 296.6.0.?, 9768.12.0.? |
$[ ]$ |
451770.o1 |
451770o1 |
451770.o |
451770o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{3} \cdot 3^{13} \cdot 5 \cdot 11 \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$48840$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$17072640$ |
$2.530975$ |
$191591101730449/25955578440$ |
$0.89653$ |
$4.18955$ |
$[1, 1, 0, -1644197, -710860251]$ |
\(y^2+xy=x^3+x^2-1644197x-710860251\) |
48840.2.0.? |
$[ ]$ |
451770.p1 |
451770p1 |
451770.p |
451770p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{16} \cdot 3^{7} \cdot 5^{3} \cdot 11 \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24420$ |
$2$ |
$0$ |
$1.209042025$ |
$1$ |
|
$4$ |
$8709120$ |
$2.069859$ |
$-1012934368666341757/197074944000$ |
$0.98353$ |
$4.01603$ |
$[1, 1, 0, -774142, 261889396]$ |
\(y^2+xy=x^3+x^2-774142x+261889396\) |
24420.2.0.? |
$[(492, 394)]$ |
451770.q1 |
451770q4 |
451770.q |
451770q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{7} \cdot 3^{5} \cdot 5^{16} \cdot 11 \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$9768$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$433520640$ |
$4.061523$ |
$680995599504466943307169/52207031250000000$ |
$1.06496$ |
$5.87849$ |
$[1, 1, 0, -2509248342, -48377586742956]$ |
\(y^2+xy=x^3+x^2-2509248342x-48377586742956\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 264.24.0.?, 296.24.0.?, $\ldots$ |
$[ ]$ |
451770.q2 |
451770q2 |
451770.q |
451770q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{14} \cdot 3^{10} \cdot 5^{8} \cdot 11^{2} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$9768$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$216760320$ |
$3.714951$ |
$201738262891771037089/45727545600000000$ |
$1.05036$ |
$5.25454$ |
$[1, 1, 0, -167272662, -649527569964]$ |
\(y^2+xy=x^3+x^2-167272662x-649527569964\) |
2.6.0.a.1, 8.12.0.b.1, 132.12.0.?, 148.12.0.?, 264.24.0.?, $\ldots$ |
$[ ]$ |
451770.q3 |
451770q1 |
451770.q |
451770q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{28} \cdot 3^{5} \cdot 5^{4} \cdot 11 \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$9768$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$108380160$ |
$3.368378$ |
$7220044159551112609/448454983680000$ |
$1.03565$ |
$4.99879$ |
$[1, 1, 0, -55124182, 148812599764]$ |
\(y^2+xy=x^3+x^2-55124182x+148812599764\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 66.6.0.a.1, 132.12.0.?, $\ldots$ |
$[ ]$ |
451770.q4 |
451770q3 |
451770.q |
451770q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{7} \cdot 3^{20} \cdot 5^{4} \cdot 11^{4} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$9768$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$433520640$ |
$4.061523$ |
$2371297246710590562911/4084000833203280000$ |
$1.06688$ |
$5.49610$ |
$[1, 1, 0, 380327338, -4012996289964]$ |
\(y^2+xy=x^3+x^2+380327338x-4012996289964\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 148.12.0.?, 264.24.0.?, $\ldots$ |
$[ ]$ |
451770.r1 |
451770r1 |
451770.r |
451770r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{11} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1320$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$17230752$ |
$2.422180$ |
$-2315118601/8448000$ |
$0.86683$ |
$4.02726$ |
$[1, 1, 0, -418942, -282277004]$ |
\(y^2+xy=x^3+x^2-418942x-282277004\) |
1320.2.0.? |
$[ ]$ |
451770.s1 |
451770s1 |
451770.s |
451770s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{9} \cdot 3^{7} \cdot 5^{3} \cdot 11^{2} \cdot 37^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.786504757$ |
$1$ |
|
$10$ |
$72503424$ |
$3.072224$ |
$49962278297449/16936128000$ |
$0.92633$ |
$4.64096$ |
$[1, 0, 1, -11663909, 9867346832]$ |
\(y^2+xy+y=x^3-11663909x+9867346832\) |
120.2.0.? |
$[(114, 92350), (8328, 696079)]$ |
451770.t1 |
451770t6 |
451770.t |
451770t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3 \cdot 5^{8} \cdot 11^{2} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$1$ |
$16$ |
$2$ |
$0$ |
$13271040$ |
$2.505547$ |
$6484907238722641/283593750$ |
$1.00744$ |
$4.46003$ |
$[1, 0, 1, -5318594, -4721366074]$ |
\(y^2+xy+y=x^3-5318594x-4721366074\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.bj.1, 80.24.0.?, $\ldots$ |
$[ ]$ |
451770.t2 |
451770t3 |
451770.t |
451770t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3^{8} \cdot 5 \cdot 11 \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6635520$ |
$2.158974$ |
$179415687049201/1443420$ |
$0.99008$ |
$4.18451$ |
$[1, 0, 1, -1608604, 785135246]$ |
\(y^2+xy+y=x^3-1608604x+785135246\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 40.24.0.cb.1, 48.24.0.h.1, $\ldots$ |
$[ ]$ |
451770.t3 |
451770t4 |
451770.t |
451770t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 11^{4} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$48840$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$2$ |
$6635520$ |
$2.158974$ |
$1834216913521/329422500$ |
$0.96888$ |
$3.83253$ |
$[1, 0, 1, -349124, -65966578]$ |
\(y^2+xy+y=x^3-349124x-65966578\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0.e.1, 40.24.0.i.1, 88.24.0.?, $\ldots$ |
$[ ]$ |
451770.t4 |
451770t2 |
451770.t |
451770t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$48840$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$2$ |
$3317760$ |
$1.812401$ |
$46694890801/3920400$ |
$0.93791$ |
$3.55062$ |
$[1, 0, 1, -102704, 11705006]$ |
\(y^2+xy+y=x^3-102704x+11705006\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0.l.1, 40.24.0.i.2, 88.24.0.?, $\ldots$ |
$[ ]$ |
451770.t5 |
451770t1 |
451770.t |
451770t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1658880$ |
$1.465826$ |
$13651919/126720$ |
$0.92127$ |
$3.13385$ |
$[1, 0, 1, 6816, 840622]$ |
\(y^2+xy+y=x^3+6816x+840622\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0.h.1, 80.24.0.?, $\ldots$ |
$[ ]$ |
451770.t6 |
451770t5 |
451770.t |
451770t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2 \cdot 3 \cdot 5^{2} \cdot 11^{8} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$97680$ |
$192$ |
$1$ |
$1$ |
$16$ |
$2$ |
$0$ |
$13271040$ |
$2.505547$ |
$13411719834479/32153832150$ |
$1.00277$ |
$4.07327$ |
$[1, 0, 1, 677626, -380562778]$ |
\(y^2+xy+y=x^3+677626x-380562778\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.bn.1, 40.24.0.cb.2, $\ldots$ |
$[ ]$ |
451770.u1 |
451770u1 |
451770.u |
451770u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{9} \cdot 3^{5} \cdot 5^{3} \cdot 11 \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$48840$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11819520$ |
$2.380344$ |
$13415107060081/6329664000$ |
$0.89550$ |
$3.98535$ |
$[1, 0, 1, -677684, -92333518]$ |
\(y^2+xy+y=x^3-677684x-92333518\) |
48840.2.0.? |
$[ ]$ |
451770.v1 |
451770v2 |
451770.v |
451770v |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3 \cdot 5 \cdot 11^{5} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$48840$ |
$48$ |
$1$ |
$49.24813522$ |
$1$ |
|
$0$ |
$711360000$ |
$4.477219$ |
$57216394348828693207027666561/178766610$ |
$1.07414$ |
$6.74930$ |
$[1, 0, 1, -109901184389, -14023355906605594]$ |
\(y^2+xy+y=x^3-109901184389x-14023355906605594\) |
5.12.0.a.2, 185.24.0.?, 1320.24.0.?, 48840.48.1.? |
$[(-2486411408531409275132583436/113976711121, 141696031262113892784116740032084338598/113976711121)]$ |
451770.v2 |
451770v1 |
451770.v |
451770v |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{5} \cdot 3^{5} \cdot 5^{5} \cdot 11 \cdot 37^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$48840$ |
$48$ |
$1$ |
$9.849627044$ |
$1$ |
|
$0$ |
$142272000$ |
$3.672497$ |
$247995227167710291361/18535639706100000$ |
$0.96876$ |
$5.27040$ |
$[1, 0, 1, -179188439, -861571429414]$ |
\(y^2+xy+y=x^3-179188439x-861571429414\) |
5.12.0.a.1, 185.24.0.?, 1320.24.0.?, 48840.48.1.? |
$[(-173722446/169, 292745463772/169)]$ |
451770.w1 |
451770w1 |
451770.w |
451770w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$48840$ |
$12$ |
$0$ |
$2.652572660$ |
$1$ |
|
$3$ |
$230400$ |
$0.150802$ |
$2352637/660$ |
$0.75241$ |
$1.95868$ |
$[1, 0, 1, -103, 278]$ |
\(y^2+xy+y=x^3-103x+278\) |
2.3.0.a.1, 296.6.0.?, 1320.6.0.?, 12210.6.0.?, 48840.12.0.? |
$[(12, 22)]$ |
451770.w2 |
451770w2 |
451770.w |
451770w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$48840$ |
$12$ |
$0$ |
$1.326286330$ |
$1$ |
|
$4$ |
$460800$ |
$0.497375$ |
$41781923/54450$ |
$0.82183$ |
$2.19688$ |
$[1, 0, 1, 267, 1906]$ |
\(y^2+xy+y=x^3+267x+1906\) |
2.3.0.a.1, 296.6.0.?, 1320.6.0.?, 24420.6.0.?, 48840.12.0.? |
$[(2, 48)]$ |
451770.x1 |
451770x2 |
451770.x |
451770x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 11^{2} \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4884$ |
$12$ |
$0$ |
$0.344442988$ |
$1$ |
|
$12$ |
$1824768$ |
$1.455345$ |
$8963913629917/5104687500$ |
$0.98141$ |
$3.12243$ |
$[1, 0, 1, -16013, -99844]$ |
\(y^2+xy+y=x^3-16013x-99844\) |
2.3.0.a.1, 132.6.0.?, 444.6.0.?, 1628.6.0.?, 4884.12.0.? |
$[(-75, 862)]$ |
451770.x2 |
451770x1 |
451770.x |
451770x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{4} \cdot 11 \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4884$ |
$12$ |
$0$ |
$0.688885977$ |
$1$ |
|
$9$ |
$912384$ |
$1.108772$ |
$136352311523/80190000$ |
$0.95334$ |
$2.80097$ |
$[1, 0, 1, 3967, -11932]$ |
\(y^2+xy+y=x^3+3967x-11932\) |
2.3.0.a.1, 132.6.0.?, 444.6.0.?, 814.6.0.?, 4884.12.0.? |
$[(39, 430)]$ |
451770.y1 |
451770y2 |
451770.y |
451770y |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2 \cdot 3 \cdot 5^{3} \cdot 11^{3} \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$48840$ |
$16$ |
$0$ |
$5.245684333$ |
$1$ |
|
$0$ |
$23639040$ |
$2.550377$ |
$93632326352929/50564357250$ |
$0.92269$ |
$4.13457$ |
$[1, 0, 1, -1295103, -146756744]$ |
\(y^2+xy+y=x^3-1295103x-146756744\) |
3.4.0.a.1, 111.8.0.?, 1320.8.0.?, 48840.16.0.? |
$[(-47228/9, 14977511/9)]$ |
451770.y2 |
451770y1 |
451770.y |
451770y |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$48840$ |
$16$ |
$0$ |
$1.748561444$ |
$1$ |
|
$2$ |
$7879680$ |
$2.001068$ |
$19010647320769/439560$ |
$0.87635$ |
$4.01212$ |
$[1, 0, 1, -761193, 255548548]$ |
\(y^2+xy+y=x^3-761193x+255548548\) |
3.4.0.a.1, 111.8.0.?, 1320.8.0.?, 48840.16.0.? |
$[(-478, 22827)]$ |
451770.z1 |
451770z1 |
451770.z |
451770z |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{12} \cdot 3^{3} \cdot 5^{6} \cdot 11^{3} \cdot 37^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4884$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$345254400$ |
$4.083183$ |
$-3789636600490849/2299968000000$ |
$0.98213$ |
$5.58312$ |
$[1, 0, 1, -548231138, 7071870718388]$ |
\(y^2+xy+y=x^3-548231138x+7071870718388\) |
3.4.0.a.1, 111.8.0.?, 132.8.0.?, 4884.16.0.? |
$[ ]$ |
451770.z2 |
451770z2 |
451770.z |
451770z |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{18} \cdot 11 \cdot 37^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4884$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1035763200$ |
$4.632492$ |
$1958539795276466591/2014160156250000$ |
$1.01711$ |
$6.00786$ |
$[1, 0, 1, 4399553902, -99012598767244]$ |
\(y^2+xy+y=x^3+4399553902x-99012598767244\) |
3.4.0.a.1, 111.8.0.?, 132.8.0.?, 4884.16.0.? |
$[ ]$ |
451770.ba1 |
451770ba1 |
451770.ba |
451770ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{2} \cdot 11 \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34525440$ |
$2.969070$ |
$-3883285783081/5542732800$ |
$0.91652$ |
$4.54024$ |
$[1, 0, 1, -4977713, 7958133956]$ |
\(y^2+xy+y=x^3-4977713x+7958133956\) |
132.2.0.? |
$[ ]$ |