Learn more

Refine search


Results (1-50 of 122 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
451770.a1 451770.a \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $19.20989103$ $[1, 1, 0, 796251442, 309591097512]$ \(y^2+xy=x^3+x^2+796251442x+309591097512\) 132.2.0.? $[(427989169/653, 293194673312884/653)]$
451770.b1 451770.b \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -25593483, -51177955527]$ \(y^2+xy=x^3+x^2-25593483x-51177955527\) 6.2.0.a.1 $[ ]$
451770.c1 451770.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\Z/2\Z$ $30.64067222$ $[1, 1, 0, -234215393, -1379754999687]$ \(y^2+xy=x^3+x^2-234215393x-1379754999687\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.by.1, 44.12.0.h.1, $\ldots$ $[(203746/3, 59588131/3), (27876, 3694683)]$
451770.c2 451770.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\Z/2\Z$ $7.660168055$ $[1, 1, 0, -16188453, 25008455133]$ \(y^2+xy=x^3+x^2-16188453x+25008455133\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.by.2, 40.24.0.cb.2, $\ldots$ $[(2078, 17595), (2753, 34902)]$
451770.c3 451770.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $30.64067222$ $[1, 1, 0, -14655173, -21511566723]$ \(y^2+xy=x^3+x^2-14655173x-21511566723\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0.h.1, 40.24.0.i.2, 44.24.0.c.1, $\ldots$ $[(-2143, 8726), (-18857/3, 64822/3)]$
451770.c4 451770.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\Z/2\Z$ $30.64067222$ $[1, 1, 0, -7125673, -43577519423]$ \(y^2+xy=x^3+x^2-7125673x-43577519423\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 22.6.0.a.1, 40.24.0.cb.1, $\ldots$ $[(4196, 18437), (54451/3, 9831937/3)]$
451770.c5 451770.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $7.660168055$ $[1, 1, 0, -1403253, 59908653]$ \(y^2+xy=x^3+x^2-1403253x+59908653\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0.h.2, 40.24.0.i.1, 60.24.0.c.1, $\ldots$ $[(-774, 26523), (-422, 24235)]$
451770.c6 451770.c \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\Z/2\Z$ $30.64067222$ $[1, 1, 0, 349067, 7689517]$ \(y^2+xy=x^3+x^2+349067x+7689517\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 30.6.0.a.1, 48.24.0.f.2, $\ldots$ $[(234, 9995), (109178/13, 48580199/13)]$
451770.d1 451770.d \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $1.838615680$ $[1, 1, 0, -4653, 118503]$ \(y^2+xy=x^3+x^2-4653x+118503\) 2.3.0.a.1, 440.6.0.?, 740.6.0.?, 3256.6.0.?, 16280.12.0.? $[(89, 603)]$
451770.d2 451770.d \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $0.919307840$ $[1, 1, 0, -583, -2783]$ \(y^2+xy=x^3+x^2-583x-2783\) 2.3.0.a.1, 370.6.0.?, 440.6.0.?, 3256.6.0.?, 16280.12.0.? $[(-11, 55)]$
451770.e1 451770.e \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -195388, -777008]$ \(y^2+xy=x^3+x^2-195388x-777008\) 3.6.0.b.1, 111.12.0.?, 1320.12.0.?, 48840.24.1.? $[ ]$
451770.f1 451770.f \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $135.0748135$ $[1, 1, 0, -5044039458, -98065346110092]$ \(y^2+xy=x^3+x^2-5044039458x-98065346110092\) 120.2.0.? $[(1168622368884370675061269807737827115871744359198958141869881/3642065428910280989491834891, 572287169686246594657606488648628709027861360554689985576368649271926442825660994694552908/3642065428910280989491834891)]$
451770.g1 451770.g \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -17085148, -26806244042]$ \(y^2+xy=x^3+x^2-17085148x-26806244042\) 48840.2.0.? $[ ]$
451770.h1 451770.h \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $0.908906241$ $[1, 1, 0, -102, -5484]$ \(y^2+xy=x^3+x^2-102x-5484\) 6.2.0.a.1 $[(92, 834)]$
451770.i1 451770.i \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $2.717623904$ $[1, 1, 0, -847402, -300542276]$ \(y^2+xy=x^3+x^2-847402x-300542276\) 120.2.0.? $[(-537, 406), (1113, 11131)]$
451770.j1 451770.j \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3888837557, 93340545718701]$ \(y^2+xy=x^3+x^2-3888837557x+93340545718701\) 132.2.0.? $[ ]$
451770.k1 451770.k \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $3.613462680$ $[1, 1, 0, -46725367, 122914067221]$ \(y^2+xy=x^3+x^2-46725367x+122914067221\) 48840.2.0.? $[(1347, 249169)]$
451770.l1 451770.l \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $7.224034001$ $[1, 1, 0, -78424562, -267323373414]$ \(y^2+xy=x^3+x^2-78424562x-267323373414\) 48840.2.0.? $[(-5612327/33, 55500073/33)]$
451770.m1 451770.m \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $2.176924207$ $[1, 1, 0, -9954027, 7102912599]$ \(y^2+xy=x^3+x^2-9954027x+7102912599\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 120.12.0.?, 296.12.0.?, $\ldots$ $[(2753, 22581)]$
451770.m2 451770.m \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.353848414$ $[1, 1, 0, -4382197, -3453476519]$ \(y^2+xy=x^3+x^2-4382197x-3453476519\) 2.6.0.a.1, 44.12.0-2.a.1.1, 120.12.0.?, 296.12.0.?, 1320.24.0.?, $\ldots$ $[(2617, 53554)]$
451770.m3 451770.m \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $8.707696829$ $[1, 1, 0, -4354817, -3499677531]$ \(y^2+xy=x^3+x^2-4354817x-3499677531\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 120.12.0.?, 296.12.0.?, $\ldots$ $[(16483, 2090166)]$
451770.m4 451770.m \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $8.707696829$ $[1, 1, 0, 751553, -11052453269]$ \(y^2+xy=x^3+x^2+751553x-11052453269\) 2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 120.12.0.?, 296.12.0.?, $\ldots$ $[(114543/7, 19847542/7)]$
451770.n1 451770.n \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -453167, 55078821]$ \(y^2+xy=x^3+x^2-453167x+55078821\) 2.3.0.a.1, 66.6.0.a.1, 296.6.0.?, 9768.12.0.? $[ ]$
451770.n2 451770.n \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1572953, 414512509]$ \(y^2+xy=x^3+x^2+1572953x+414512509\) 2.3.0.a.1, 132.6.0.?, 296.6.0.?, 9768.12.0.? $[ ]$
451770.o1 451770.o \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1644197, -710860251]$ \(y^2+xy=x^3+x^2-1644197x-710860251\) 48840.2.0.? $[ ]$
451770.p1 451770.p \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $1.209042025$ $[1, 1, 0, -774142, 261889396]$ \(y^2+xy=x^3+x^2-774142x+261889396\) 24420.2.0.? $[(492, 394)]$
451770.q1 451770.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2509248342, -48377586742956]$ \(y^2+xy=x^3+x^2-2509248342x-48377586742956\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 264.24.0.?, 296.24.0.?, $\ldots$ $[ ]$
451770.q2 451770.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -167272662, -649527569964]$ \(y^2+xy=x^3+x^2-167272662x-649527569964\) 2.6.0.a.1, 8.12.0.b.1, 132.12.0.?, 148.12.0.?, 264.24.0.?, $\ldots$ $[ ]$
451770.q3 451770.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -55124182, 148812599764]$ \(y^2+xy=x^3+x^2-55124182x+148812599764\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 66.6.0.a.1, 132.12.0.?, $\ldots$ $[ ]$
451770.q4 451770.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 380327338, -4012996289964]$ \(y^2+xy=x^3+x^2+380327338x-4012996289964\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 148.12.0.?, 264.24.0.?, $\ldots$ $[ ]$
451770.r1 451770.r \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -418942, -282277004]$ \(y^2+xy=x^3+x^2-418942x-282277004\) 1320.2.0.? $[ ]$
451770.s1 451770.s \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $2.786504757$ $[1, 0, 1, -11663909, 9867346832]$ \(y^2+xy+y=x^3-11663909x+9867346832\) 120.2.0.? $[(114, 92350), (8328, 696079)]$
451770.t1 451770.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -5318594, -4721366074]$ \(y^2+xy+y=x^3-5318594x-4721366074\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.bj.1, 80.24.0.?, $\ldots$ $[ ]$
451770.t2 451770.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1608604, 785135246]$ \(y^2+xy+y=x^3-1608604x+785135246\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 40.24.0.cb.1, 48.24.0.h.1, $\ldots$ $[ ]$
451770.t3 451770.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -349124, -65966578]$ \(y^2+xy+y=x^3-349124x-65966578\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0.e.1, 40.24.0.i.1, 88.24.0.?, $\ldots$ $[ ]$
451770.t4 451770.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -102704, 11705006]$ \(y^2+xy+y=x^3-102704x+11705006\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0.l.1, 40.24.0.i.2, 88.24.0.?, $\ldots$ $[ ]$
451770.t5 451770.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 6816, 840622]$ \(y^2+xy+y=x^3+6816x+840622\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0.h.1, 80.24.0.?, $\ldots$ $[ ]$
451770.t6 451770.t \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 677626, -380562778]$ \(y^2+xy+y=x^3+677626x-380562778\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0.bn.1, 40.24.0.cb.2, $\ldots$ $[ ]$
451770.u1 451770.u \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -677684, -92333518]$ \(y^2+xy+y=x^3-677684x-92333518\) 48840.2.0.? $[ ]$
451770.v1 451770.v \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $49.24813522$ $[1, 0, 1, -109901184389, -14023355906605594]$ \(y^2+xy+y=x^3-109901184389x-14023355906605594\) 5.12.0.a.2, 185.24.0.?, 1320.24.0.?, 48840.48.1.? $[(-2486411408531409275132583436/113976711121, 141696031262113892784116740032084338598/113976711121)]$
451770.v2 451770.v \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $9.849627044$ $[1, 0, 1, -179188439, -861571429414]$ \(y^2+xy+y=x^3-179188439x-861571429414\) 5.12.0.a.1, 185.24.0.?, 1320.24.0.?, 48840.48.1.? $[(-173722446/169, 292745463772/169)]$
451770.w1 451770.w \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $2.652572660$ $[1, 0, 1, -103, 278]$ \(y^2+xy+y=x^3-103x+278\) 2.3.0.a.1, 296.6.0.?, 1320.6.0.?, 12210.6.0.?, 48840.12.0.? $[(12, 22)]$
451770.w2 451770.w \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $1.326286330$ $[1, 0, 1, 267, 1906]$ \(y^2+xy+y=x^3+267x+1906\) 2.3.0.a.1, 296.6.0.?, 1320.6.0.?, 24420.6.0.?, 48840.12.0.? $[(2, 48)]$
451770.x1 451770.x \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $0.344442988$ $[1, 0, 1, -16013, -99844]$ \(y^2+xy+y=x^3-16013x-99844\) 2.3.0.a.1, 132.6.0.?, 444.6.0.?, 1628.6.0.?, 4884.12.0.? $[(-75, 862)]$
451770.x2 451770.x \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $0.688885977$ $[1, 0, 1, 3967, -11932]$ \(y^2+xy+y=x^3+3967x-11932\) 2.3.0.a.1, 132.6.0.?, 444.6.0.?, 814.6.0.?, 4884.12.0.? $[(39, 430)]$
451770.y1 451770.y \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $5.245684333$ $[1, 0, 1, -1295103, -146756744]$ \(y^2+xy+y=x^3-1295103x-146756744\) 3.4.0.a.1, 111.8.0.?, 1320.8.0.?, 48840.16.0.? $[(-47228/9, 14977511/9)]$
451770.y2 451770.y \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $1.748561444$ $[1, 0, 1, -761193, 255548548]$ \(y^2+xy+y=x^3-761193x+255548548\) 3.4.0.a.1, 111.8.0.?, 1320.8.0.?, 48840.16.0.? $[(-478, 22827)]$
451770.z1 451770.z \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -548231138, 7071870718388]$ \(y^2+xy+y=x^3-548231138x+7071870718388\) 3.4.0.a.1, 111.8.0.?, 132.8.0.?, 4884.16.0.? $[ ]$
451770.z2 451770.z \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 4399553902, -99012598767244]$ \(y^2+xy+y=x^3+4399553902x-99012598767244\) 3.4.0.a.1, 111.8.0.?, 132.8.0.?, 4884.16.0.? $[ ]$
451770.ba1 451770.ba \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -4977713, 7958133956]$ \(y^2+xy+y=x^3-4977713x+7958133956\) 132.2.0.? $[ ]$
Next   displayed columns for results