Learn more

Refine search


Results (1-50 of 123 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
436810.a1 436810.a \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -89292154, -4965903859790]$ \(y^2+xy=x^3-x^2-89292154x-4965903859790\) 152.2.0.? $[ ]$
436810.b1 436810.b \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -63784, -6192092]$ \(y^2+xy=x^3-x^2-63784x-6192092\) 20.2.0.a.1 $[ ]$
436810.c1 436810.c \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3648274, -1171341228]$ \(y^2+xy+y=x^3-3648274x-1171341228\) 2.3.0.a.1, 44.6.0.d.1, 76.6.0.?, 418.6.0.?, 836.12.0.? $[ ]$
436810.c2 436810.c \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 12950506, -8859896124]$ \(y^2+xy+y=x^3+12950506x-8859896124\) 2.3.0.a.1, 38.6.0.b.1, 44.6.0.d.1, 836.12.0.? $[ ]$
436810.d1 436810.d \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.275929041$ $[1, 0, 1, -27672824, -25921432638]$ \(y^2+xy+y=x^3-27672824x-25921432638\) 2.3.0.a.1, 10.6.0.a.1, 836.6.0.?, 4180.12.0.? $[(175438, 73361882)]$
436810.d2 436810.d \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.637964520$ $[1, 0, 1, -23304724, -43282009278]$ \(y^2+xy+y=x^3-23304724x-43282009278\) 2.3.0.a.1, 20.6.0.c.1, 418.6.0.?, 4180.12.0.? $[(-2740, 3366)]$
436810.e1 436810.e \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $2.458866004$ $[1, 0, 1, -1345094, 600217176]$ \(y^2+xy+y=x^3-1345094x+600217176\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.d.1, 20.6.0.e.1, $\ldots$ $[(68, 22528), (693, 653)]$
436810.e2 436810.e \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $9.835464019$ $[1, 0, 1, -74374, 11619672]$ \(y^2+xy+y=x^3-74374x+11619672\) 2.3.0.a.1, 3.6.0.b.1, 6.18.0.b.1, 12.36.0.c.1, 20.6.0.e.1, $\ldots$ $[(30, 3053), (-75, 4133)]$
436810.f1 436810.f \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $11.43075362$ $[1, 0, 1, -21580474, -38588669748]$ \(y^2+xy+y=x^3-21580474x-38588669748\) 2.3.0.a.1, 40.6.0.f.1, 836.6.0.?, 8360.12.0.? $[(67972/3, 12825004/3)]$
436810.f2 436810.f \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.715376812$ $[1, 0, 1, -1349274, -602568628]$ \(y^2+xy+y=x^3-1349274x-602568628\) 2.3.0.a.1, 40.6.0.f.1, 418.6.0.?, 8360.12.0.? $[(6813, 550177)]$
436810.g1 436810.g \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $37.53379216$ $[1, 0, 1, -187064793, 3029993290058]$ \(y^2+xy+y=x^3-187064793x+3029993290058\) 3.4.0.a.1, 24.8.0-3.a.1.5, 33.8.0-3.a.1.1, 88.2.0.?, 264.16.0.? $[(102691254659854728/3117113, 45103800591016397282465105/3117113)]$
436810.g2 436810.g \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $12.51126405$ $[1, 0, 1, 20419957, -101615538642]$ \(y^2+xy+y=x^3+20419957x-101615538642\) 3.4.0.a.1, 24.8.0-3.a.1.6, 33.8.0-3.a.1.2, 88.2.0.?, 264.16.0.? $[(19323006/43, 88587848855/43)]$
436810.h1 436810.h \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.954198800$ $[1, 1, 0, -3866678, 2952878548]$ \(y^2+xy=x^3+x^2-3866678x+2952878548\) 3.4.0.a.1, 440.2.0.?, 627.8.0.?, 1320.8.0.?, 2280.8.0.?, $\ldots$ $[(611, 28311)]$
436810.h2 436810.h \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $8.862596402$ $[1, 1, 0, 12950507, 15320236397]$ \(y^2+xy=x^3+x^2+12950507x+15320236397\) 3.4.0.a.1, 440.2.0.?, 627.8.0.?, 1320.8.0.?, 2280.8.0.?, $\ldots$ $[(133487/2, 48930803/2)]$
436810.i1 436810.i \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3648273, 12498443797]$ \(y^2+xy=x^3+x^2-3648273x+12498443797\) 8360.2.0.? $[ ]$
436810.j1 436810.j \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.893442801$ $[1, 1, 0, -2198858, 1254084748]$ \(y^2+xy=x^3+x^2-2198858x+1254084748\) 3.4.0.a.1, 152.2.0.?, 264.8.0.?, 456.8.0.?, 627.8.0.?, $\ldots$ $[(13629/4, -14623/4)]$
436810.j2 436810.j \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $8.680328403$ $[1, 1, 0, -2059873, 1419671477]$ \(y^2+xy=x^3+x^2-2059873x+1419671477\) 3.4.0.a.1, 152.2.0.?, 264.8.0.?, 456.8.0.?, 627.8.0.?, $\ldots$ $[(1244221/4, 1385150433/4)]$
436810.k1 436810.k \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.185409640$ $[1, 1, 0, -415298017, -13106707522729]$ \(y^2+xy=x^3+x^2-415298017x-13106707522729\) 8360.2.0.? $[(13097317/9, 46888636456/9)]$
436810.l1 436810.l \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -26537117, 53458292221]$ \(y^2+xy=x^3+x^2-26537117x+53458292221\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 627.8.0.?, 12540.16.0.? $[ ]$
436810.l2 436810.l \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 105597908, 250048782416]$ \(y^2+xy=x^3+x^2+105597908x+250048782416\) 3.4.0.a.1, 20.2.0.a.1, 60.8.0.a.1, 627.8.0.?, 12540.16.0.? $[ ]$
436810.m1 436810.m \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.581808164$ $[1, 1, 0, 200253, 33468109]$ \(y^2+xy=x^3+x^2+200253x+33468109\) 152.2.0.? $[(853, 28311)]$
436810.n1 436810.n \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.529631302$ $[1, 1, 0, -1501007, 707208451]$ \(y^2+xy=x^3+x^2-1501007x+707208451\) 152.2.0.? $[(587, 5074)]$
436810.o1 436810.o \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -881810, -319591354]$ \(y^2+xy=x^3-x^2-881810x-319591354\) 7.8.0.a.1, 40.2.0.a.1, 77.16.0.?, 133.24.0.?, 280.16.0.?, $\ldots$ $[ ]$
436810.o2 436810.o \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -881810, 26392825300]$ \(y^2+xy=x^3-x^2-881810x+26392825300\) 7.8.0.a.1, 40.2.0.a.1, 77.16.0.?, 133.24.0.?, 280.16.0.?, $\ldots$ $[ ]$
436810.p1 436810.p \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.998960144$ $[1, -1, 0, -8089175, -5523789375]$ \(y^2+xy=x^3-x^2-8089175x-5523789375\) 2.3.0.a.1, 44.6.0.a.1, 380.6.0.?, 4180.12.0.? $[(15800, 1944225)]$
436810.p2 436810.p \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $13.99792028$ $[1, -1, 0, 1520645, -605483499]$ \(y^2+xy=x^3-x^2+1520645x-605483499\) 2.3.0.a.1, 44.6.0.b.1, 190.6.0.?, 4180.12.0.? $[(2037778/23, 3015944735/23)]$
436810.q1 436810.q \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.490946623$ $[1, -1, 0, -881810, 374237650]$ \(y^2+xy=x^3-x^2-881810x+374237650\) 88.2.0.? $[(993, 21344), (14545, 1743295)]$
436810.r1 436810.r \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -273669655, 1438838970861]$ \(y^2+xy=x^3-x^2-273669655x+1438838970861\) 2.3.0.a.1, 220.6.0.?, 380.6.0.?, 836.6.0.?, 4180.12.0.? $[ ]$
436810.r2 436810.r \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -81473255, -262368244099]$ \(y^2+xy=x^3-x^2-81473255x-262368244099\) 2.3.0.a.1, 220.6.0.?, 380.6.0.?, 418.6.0.?, 4180.12.0.? $[ ]$
436810.s1 436810.s \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -236841185774, 44364391391725268]$ \(y^2+xy=x^3-x^2-236841185774x+44364391391725268\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 44.12.0.h.1, 76.12.0.?, $\ldots$ $[ ]$
436810.s2 436810.s \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -21804864494, -27430994547500]$ \(y^2+xy=x^3-x^2-21804864494x-27430994547500\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 88.12.0.?, $\ldots$ $[ ]$
436810.s3 436810.s \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -14815904494, 691885348780500]$ \(y^2+xy=x^3-x^2-14815904494x+691885348780500\) 2.6.0.a.1, 20.12.0.b.1, 44.12.0.a.1, 76.12.0.?, 220.24.0.?, $\ldots$ $[ ]$
436810.s4 436810.s \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -502514414, 20739075963348]$ \(y^2+xy=x^3-x^2-502514414x+20739075963348\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 76.12.0.?, 88.12.0.?, $\ldots$ $[ ]$
436810.t1 436810.t \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1025375984, 12638091180688]$ \(y^2+xy=x^3-x^2-1025375984x+12638091180688\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 44.12.0.h.1, 76.12.0.?, $\ldots$ $[ ]$
436810.t2 436810.t \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -64393984, 195488441088]$ \(y^2+xy=x^3-x^2-64393984x+195488441088\) 2.6.0.a.1, 4.12.0-2.a.1.2, 44.24.0-44.a.1.4, 76.24.0.?, 836.48.0.? $[ ]$
436810.t3 436810.t \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8482304, -4932567040]$ \(y^2+xy=x^3-x^2-8482304x-4932567040\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 44.12.0-4.c.1.2, 76.12.0.?, $\ldots$ $[ ]$
436810.t4 436810.t \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 2001136, 579159281520]$ \(y^2+xy=x^3-x^2+2001136x+579159281520\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 38.6.0.b.1, 44.12.0-4.c.1.1, $\ldots$ $[ ]$
436810.u1 436810.u \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $8.617444693$ $[1, 0, 1, 18631, -966308]$ \(y^2+xy+y=x^3+18631x-966308\) 8.2.0.a.1 $[(20866/9, 3242026/9)]$
436810.v1 436810.v \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.287746276$ $[1, 0, 1, 64611, 11977062]$ \(y^2+xy+y=x^3+64611x+11977062\) 152.2.0.? $[(574/3, 108328/3)]$
436810.w1 436810.w \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.215294427$ $[1, 0, 1, -4478213, 3647284606]$ \(y^2+xy+y=x^3-4478213x+3647284606\) 152.2.0.? $[(3640, 186802)]$
436810.x1 436810.x \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1281558, -832201944]$ \(y^2+xy+y=x^3-1281558x-832201944\) 20.2.0.a.1 $[ ]$
436810.y1 436810.y \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.533568912$ $[1, 0, 1, -70403, -7814402]$ \(y^2+xy+y=x^3-70403x-7814402\) 3.6.0.b.1, 33.12.0.a.1, 120.12.0.?, 440.2.0.?, 1320.24.1.? $[(4798/3, 271084/3)]$
436810.z1 436810.z \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -110113, 45436708]$ \(y^2+xy+y=x^3-110113x+45436708\) 20.2.0.a.1 $[ ]$
436810.ba1 436810.ba \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -2075758, 6652624768]$ \(y^2+xy+y=x^3-2075758x+6652624768\) 152.2.0.? $[ ]$
436810.bb1 436810.bb \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $11.47127454$ $[1, 0, 1, -10838, -547472]$ \(y^2+xy+y=x^3-10838x-547472\) 8360.2.0.? $[(4277038/167, 5157708996/167)]$
436810.bc1 436810.bc \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 12338972, 269617923298]$ \(y^2+xy+y=x^3+12338972x+269617923298\) 152.2.0.? $[ ]$
436810.bd1 436810.bd \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $33.67980502$ $[1, 1, 0, -1886736183, -31528999528363]$ \(y^2+xy=x^3+x^2-1886736183x-31528999528363\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 10.6.0.a.1, 12.24.0-6.a.1.5, $\ldots$ $[(164809798475620759/454710, 66768541684666480220521153/454710)]$
436810.bd2 436810.bd \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $16.83990251$ $[1, 1, 0, -139496183, -299880112363]$ \(y^2+xy=x^3+x^2-139496183x-299880112363\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 20.6.0.c.1, 60.48.0-60.q.1.2, $\ldots$ $[(15171525079/138, 1867467084720799/138)]$
436810.bd3 436810.bd \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $11.22660167$ $[1, 1, 0, -73319468, 190828354028]$ \(y^2+xy=x^3+x^2-73319468x+190828354028\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 10.6.0.a.1, 12.24.0-6.a.1.11, $\ldots$ $[(2406379/15, 2661096103/15)]$
436810.bd4 436810.bd \( 2 \cdot 5 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.613300838$ $[1, 1, 0, -68951368, 220333122288]$ \(y^2+xy=x^3+x^2-68951368x+220333122288\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 20.6.0.c.1, 60.48.0-60.q.1.1, $\ldots$ $[(44791/3, 521176/3)]$
Next   displayed columns for results