Learn more

Refine search


Results (29 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
41574.a1 41574.a \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $1.292510425$ $[1, 1, 0, -1084814, -431969676]$ \(y^2+xy=x^3+x^2-1084814x-431969676\) 3.6.0.b.1, 39.12.0.a.1, 492.12.0.?, 6396.24.1.? $[(5140, 357738)]$
41574.b1 41574.b \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -45633, -3772179]$ \(y^2+xy=x^3+x^2-45633x-3772179\) 984.2.0.? $[ ]$
41574.c1 41574.c \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5063246763, 138670602576381]$ \(y^2+xy=x^3+x^2-5063246763x+138670602576381\) 6396.2.0.? $[ ]$
41574.d1 41574.d \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -10988, 53136]$ \(y^2+xy=x^3+x^2-10988x+53136\) 6396.2.0.? $[ ]$
41574.e1 41574.e \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -7418765, -7780690809]$ \(y^2+xy=x^3+x^2-7418765x-7780690809\) 328.2.0.? $[ ]$
41574.f1 41574.f \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 13686, 46589652]$ \(y^2+xy=x^3+x^2+13686x+46589652\) 328.2.0.? $[ ]$
41574.g1 41574.g \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $2$ $\mathsf{trivial}$ $0.148030055$ $[1, 0, 1, -485, -700]$ \(y^2+xy+y=x^3-485x-700\) 6396.2.0.? $[(-12, 64), (-3, 28)]$
41574.h1 41574.h \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -97941419, -373084493962]$ \(y^2+xy+y=x^3-97941419x-373084493962\) 5.12.0.a.2, 65.24.0-5.a.2.1, 984.2.0.?, 4920.24.1.?, 63960.48.1.? $[ ]$
41574.h2 41574.h \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -29579, -61150282]$ \(y^2+xy+y=x^3-29579x-61150282\) 5.12.0.a.1, 65.24.0-5.a.1.1, 984.2.0.?, 4920.24.1.?, 63960.48.1.? $[ ]$
41574.i1 41574.i \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -74195, -7784476]$ \(y^2+xy+y=x^3-74195x-7784476\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 104.24.0.?, 328.24.0.?, $\ldots$ $[ ]$
41574.i2 41574.i \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -4905, -107144]$ \(y^2+xy+y=x^3-4905x-107144\) 2.6.0.a.1, 8.12.0.b.1, 52.12.0-2.a.1.1, 104.24.0.?, 164.12.0.?, $\ldots$ $[ ]$
41574.i3 41574.i \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1525, 21296]$ \(y^2+xy+y=x^3-1525x+21296\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 52.12.0-4.c.1.2, 82.6.0.?, $\ldots$ $[ ]$
41574.i4 41574.i \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 10305, -636452]$ \(y^2+xy+y=x^3+10305x-636452\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ $[ ]$
41574.j1 41574.j \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $0.279209692$ $[1, 0, 1, -135542, 18845192]$ \(y^2+xy+y=x^3-135542x+18845192\) 6396.2.0.? $[(885, 23893)]$
41574.k1 41574.k \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -7017, -235305]$ \(y^2+xy+y=x^3+x^2-7017x-235305\) 984.2.0.? $[ ]$
41574.l1 41574.l \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -1534777, 230653847]$ \(y^2+xy+y=x^3+x^2-1534777x+230653847\) 6396.2.0.? $[ ]$
41574.m1 41574.m \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $2$ $\mathsf{trivial}$ $0.191970348$ $[1, 1, 1, 81, 21237]$ \(y^2+xy+y=x^3+x^2+81x+21237\) 328.2.0.? $[(31, 218), (135, 1518)]$
41574.n1 41574.n \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -43898, -3558391]$ \(y^2+xy+y=x^3+x^2-43898x-3558391\) 328.2.0.? $[ ]$
41574.o1 41574.o \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $1$ $\Z/2\Z$ $1.728380143$ $[1, 1, 1, -11242, 451511]$ \(y^2+xy+y=x^3+x^2-11242x+451511\) 2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? $[(53, 63)]$
41574.o2 41574.o \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $1$ $\Z/2\Z$ $3.456760286$ $[1, 1, 1, -4482, 997719]$ \(y^2+xy+y=x^3+x^2-4482x+997719\) 2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? $[(391, 7499)]$
41574.p1 41574.p \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $1.554923123$ $[1, 1, 1, -6419, -199087]$ \(y^2+xy+y=x^3+x^2-6419x-199087\) 3.6.0.b.1, 39.12.0.a.1, 492.12.0.?, 6396.24.1.? $[(-47, 62)]$
41574.q1 41574.q \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -257, 5199]$ \(y^2+xy=x^3-257x+5199\) 3.4.0.a.1, 39.8.0-3.a.1.1, 984.8.0.?, 12792.16.0.? $[ ]$
41574.q2 41574.q \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 2278, -129156]$ \(y^2+xy=x^3+2278x-129156\) 3.4.0.a.1, 39.8.0-3.a.1.2, 984.8.0.?, 12792.16.0.? $[ ]$
41574.r1 41574.r \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $0.294078707$ $[1, 0, 0, -5665, 155609]$ \(y^2+xy=x^3-5665x+155609\) 6396.2.0.? $[(-64, 539)]$
41574.s1 41574.s \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -76708512, -258597411840]$ \(y^2+xy=x^3-76708512x-258597411840\) 2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? $[ ]$
41574.s2 41574.s \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -76600352, -259362989952]$ \(y^2+xy=x^3-76600352x-259362989952\) 2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? $[ ]$
41574.t1 41574.t \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -973697, -291938583]$ \(y^2+xy=x^3-973697x-291938583\) 2.3.0.a.1, 156.6.0.?, 328.6.0.?, 12792.12.0.? $[ ]$
41574.t2 41574.t \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 134943, -27860535]$ \(y^2+xy=x^3+134943x-27860535\) 2.3.0.a.1, 78.6.0.?, 328.6.0.?, 12792.12.0.? $[ ]$
41574.u1 41574.u \( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -81884, -1455468]$ \(y^2+xy=x^3-81884x-1455468\) 6396.2.0.? $[ ]$
  displayed columns for results