Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
41574.a1 |
41574f1 |
41574.a |
41574f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{6} \cdot 3^{3} \cdot 13^{9} \cdot 41^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$6396$ |
$24$ |
$1$ |
$1.292510425$ |
$1$ |
|
$4$ |
$1168128$ |
$2.296288$ |
$13313738141101/119095488$ |
$0.94546$ |
$5.01206$ |
$[1, 1, 0, -1084814, -431969676]$ |
\(y^2+xy=x^3+x^2-1084814x-431969676\) |
3.6.0.b.1, 39.12.0.a.1, 492.12.0.?, 6396.24.1.? |
$[(5140, 357738)]$ |
41574.b1 |
41574b1 |
41574.b |
41574b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{3} \cdot 3^{7} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$148176$ |
$1.379427$ |
$-2177286259681/717336$ |
$0.97361$ |
$4.11833$ |
$[1, 1, 0, -45633, -3772179]$ |
\(y^2+xy=x^3+x^2-45633x-3772179\) |
984.2.0.? |
$[ ]$ |
41574.c1 |
41574c1 |
41574.c |
41574c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{20} \cdot 3^{7} \cdot 13^{13} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42147840$ |
$4.136360$ |
$2974067900496992515620792961/5899782742437003264$ |
$1.04068$ |
$7.39518$ |
$[1, 1, 0, -5063246763, 138670602576381]$ |
\(y^2+xy=x^3+x^2-5063246763x+138670602576381\) |
6396.2.0.? |
$[ ]$ |
41574.d1 |
41574d1 |
41574.d |
41574d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{6} \cdot 3 \cdot 13^{9} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$193536$ |
$1.361155$ |
$30400540561/17294784$ |
$0.92318$ |
$3.71665$ |
$[1, 1, 0, -10988, 53136]$ |
\(y^2+xy=x^3+x^2-10988x+53136\) |
6396.2.0.? |
$[ ]$ |
41574.e1 |
41574a1 |
41574.e |
41574a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2 \cdot 3^{8} \cdot 13^{8} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1687296$ |
$2.387215$ |
$-55356908515533625/538002$ |
$0.97992$ |
$5.55439$ |
$[1, 1, 0, -7418765, -7780690809]$ |
\(y^2+xy=x^3+x^2-7418765x-7780690809\) |
328.2.0.? |
$[ ]$ |
41574.f1 |
41574e1 |
41574.f |
41574e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{11} \cdot 3^{4} \cdot 13^{10} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$604032$ |
$2.127449$ |
$2056223/6801408$ |
$1.01702$ |
$4.59197$ |
$[1, 1, 0, 13686, 46589652]$ |
\(y^2+xy=x^3+x^2+13686x+46589652\) |
328.2.0.? |
$[ ]$ |
41574.g1 |
41574j1 |
41574.g |
41574j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{9} \cdot 13^{3} \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$0.148030055$ |
$1$ |
|
$26$ |
$55296$ |
$0.580245$ |
$5725732069/3228012$ |
$0.94872$ |
$2.83615$ |
$[1, 0, 1, -485, -700]$ |
\(y^2+xy+y=x^3-485x-700\) |
6396.2.0.? |
$[(-12, 64), (-3, 28)]$ |
41574.h1 |
41574g2 |
41574.h |
41574g |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{5} \cdot 3 \cdot 13^{6} \cdot 41^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$63960$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$3510000$ |
$2.977554$ |
$-21525971829968662032241/11122195296$ |
$1.06339$ |
$6.28226$ |
$[1, 0, 1, -97941419, -373084493962]$ |
\(y^2+xy+y=x^3-97941419x-373084493962\) |
5.12.0.a.2, 65.24.0-5.a.2.1, 984.2.0.?, 4920.24.1.?, 63960.48.1.? |
$[ ]$ |
41574.h2 |
41574g1 |
41574.h |
41574g |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{25} \cdot 3^{5} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$63960$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$702000$ |
$2.172836$ |
$-592915705201/334302806016$ |
$1.07782$ |
$4.64313$ |
$[1, 0, 1, -29579, -61150282]$ |
\(y^2+xy+y=x^3-29579x-61150282\) |
5.12.0.a.1, 65.24.0-5.a.1.1, 984.2.0.?, 4920.24.1.?, 63960.48.1.? |
$[ ]$ |
41574.i1 |
41574h4 |
41574.i |
41574h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2 \cdot 3^{8} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$4264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$1.445618$ |
$9357915116017/538002$ |
$0.98265$ |
$4.25538$ |
$[1, 0, 1, -74195, -7784476]$ |
\(y^2+xy+y=x^3-74195x-7784476\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 104.24.0.?, 328.24.0.?, $\ldots$ |
$[ ]$ |
41574.i2 |
41574h2 |
41574.i |
41574h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{4} \cdot 13^{6} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.4 |
2Cs |
$4264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$110592$ |
$1.099043$ |
$2703045457/544644$ |
$0.99714$ |
$3.48910$ |
$[1, 0, 1, -4905, -107144]$ |
\(y^2+xy+y=x^3-4905x-107144\) |
2.6.0.a.1, 8.12.0.b.1, 52.12.0-2.a.1.1, 104.24.0.?, 164.12.0.?, $\ldots$ |
$[ ]$ |
41574.i3 |
41574h1 |
41574.i |
41574h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{4} \cdot 3^{2} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.11 |
2B |
$4264$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$55296$ |
$0.752470$ |
$81182737/5904$ |
$0.95826$ |
$3.15949$ |
$[1, 0, 1, -1525, 21296]$ |
\(y^2+xy+y=x^3-1525x+21296\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 52.12.0-4.c.1.2, 82.6.0.?, $\ldots$ |
$[ ]$ |
41574.i4 |
41574h3 |
41574.i |
41574h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2 \cdot 3^{2} \cdot 13^{6} \cdot 41^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.16 |
2B |
$4264$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$221184$ |
$1.445618$ |
$25076571983/50863698$ |
$0.97224$ |
$3.78489$ |
$[1, 0, 1, 10305, -636452]$ |
\(y^2+xy+y=x^3+10305x-636452\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ |
$[ ]$ |
41574.j1 |
41574i1 |
41574.j |
41574i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{10} \cdot 3^{7} \cdot 13^{7} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$0.279209692$ |
$1$ |
|
$6$ |
$376320$ |
$1.813978$ |
$57053285789473/1193647104$ |
$0.91951$ |
$4.42536$ |
$[1, 0, 1, -135542, 18845192]$ |
\(y^2+xy+y=x^3-135542x+18845192\) |
6396.2.0.? |
$[(885, 23893)]$ |
41574.k1 |
41574m1 |
41574.k |
41574m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{11} \cdot 3 \cdot 13^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$984$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$102960$ |
$1.094885$ |
$-7916293657/251904$ |
$0.93151$ |
$3.59517$ |
$[1, 1, 1, -7017, -235305]$ |
\(y^2+xy+y=x^3+x^2-7017x-235305\) |
984.2.0.? |
$[ ]$ |
41574.l1 |
41574n1 |
41574.l |
41574n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{4} \cdot 3^{11} \cdot 13^{11} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2365440$ |
$2.590649$ |
$82832250843593497/43147377342576$ |
$0.98919$ |
$5.10993$ |
$[1, 1, 1, -1534777, 230653847]$ |
\(y^2+xy+y=x^3+x^2-1534777x+230653847\) |
6396.2.0.? |
$[ ]$ |
41574.m1 |
41574l1 |
41574.m |
41574l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{11} \cdot 3^{4} \cdot 13^{4} \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$0.191970348$ |
$1$ |
|
$26$ |
$46464$ |
$0.844975$ |
$2056223/6801408$ |
$1.01702$ |
$3.14492$ |
$[1, 1, 1, 81, 21237]$ |
\(y^2+xy+y=x^3+x^2+81x+21237\) |
328.2.0.? |
$[(31, 218), (135, 1518)]$ |
41574.n1 |
41574k1 |
41574.n |
41574k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2 \cdot 3^{8} \cdot 13^{2} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$328$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$129792$ |
$1.104742$ |
$-55356908515533625/538002$ |
$0.97992$ |
$4.10734$ |
$[1, 1, 1, -43898, -3558391]$ |
\(y^2+xy+y=x^3+x^2-43898x-3558391\) |
328.2.0.? |
$[ ]$ |
41574.o1 |
41574o1 |
41574.o |
41574o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{6} \cdot 3^{4} \cdot 13^{6} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$328$ |
$12$ |
$0$ |
$1.728380143$ |
$1$ |
|
$5$ |
$103680$ |
$1.140612$ |
$32553430057/212544$ |
$0.94292$ |
$3.72308$ |
$[1, 1, 1, -11242, 451511]$ |
\(y^2+xy+y=x^3+x^2-11242x+451511\) |
2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? |
$[(53, 63)]$ |
41574.o2 |
41574o2 |
41574.o |
41574o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{3} \cdot 3^{8} \cdot 13^{6} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$328$ |
$12$ |
$0$ |
$3.456760286$ |
$1$ |
|
$2$ |
$207360$ |
$1.487185$ |
$-2062933417/88232328$ |
$1.00890$ |
$3.86953$ |
$[1, 1, 1, -4482, 997719]$ |
\(y^2+xy+y=x^3+x^2-4482x+997719\) |
2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? |
$[(391, 7499)]$ |
41574.p1 |
41574p1 |
41574.p |
41574p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{6} \cdot 3^{3} \cdot 13^{3} \cdot 41^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$6396$ |
$24$ |
$1$ |
$1.554923123$ |
$1$ |
|
$2$ |
$89856$ |
$1.013813$ |
$13313738141101/119095488$ |
$0.94546$ |
$3.56501$ |
$[1, 1, 1, -6419, -199087]$ |
\(y^2+xy+y=x^3+x^2-6419x-199087\) |
3.6.0.b.1, 39.12.0.a.1, 492.12.0.?, 6396.24.1.? |
$[(-47, 62)]$ |
41574.q1 |
41574t1 |
41574.q |
41574t |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12792$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46800$ |
$0.608270$ |
$-389017/2214$ |
$0.87552$ |
$2.88135$ |
$[1, 0, 0, -257, 5199]$ |
\(y^2+xy=x^3-257x+5199\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 984.8.0.?, 12792.16.0.? |
$[ ]$ |
41574.q2 |
41574t2 |
41574.q |
41574t |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{3} \cdot 3 \cdot 13^{6} \cdot 41^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12792$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$140400$ |
$1.157576$ |
$270840023/1654104$ |
$0.95436$ |
$3.48499$ |
$[1, 0, 0, 2278, -129156]$ |
\(y^2+xy=x^3+2278x-129156\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 984.8.0.?, 12792.16.0.? |
$[ ]$ |
41574.r1 |
41574q1 |
41574.r |
41574q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{4} \cdot 3^{3} \cdot 13^{7} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$0.294078707$ |
$1$ |
|
$4$ |
$64512$ |
$1.066767$ |
$4165509529/230256$ |
$0.83653$ |
$3.52976$ |
$[1, 0, 0, -5665, 155609]$ |
\(y^2+xy=x^3-5665x+155609\) |
6396.2.0.? |
$[(-64, 539)]$ |
41574.s1 |
41574r1 |
41574.s |
41574r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{14} \cdot 3^{12} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$328$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3628800$ |
$2.996853$ |
$10341755683137709164937/356992303104$ |
$1.06164$ |
$6.21333$ |
$[1, 0, 0, -76708512, -258597411840]$ |
\(y^2+xy=x^3-76708512x-258597411840\) |
2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? |
$[ ]$ |
41574.s2 |
41574r2 |
41574.s |
41574r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{7} \cdot 3^{24} \cdot 13^{6} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$328$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7257600$ |
$3.343430$ |
$-10298071306410575356297/60769798505543808$ |
$1.06173$ |
$6.21388$ |
$[1, 0, 0, -76600352, -259362989952]$ |
\(y^2+xy=x^3-76600352x-259362989952\) |
2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? |
$[ ]$ |
41574.t1 |
41574s2 |
41574.t |
41574s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{5} \cdot 3^{6} \cdot 13^{12} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$12792$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1451520$ |
$2.426254$ |
$21151205362964377/4616591814432$ |
$0.95995$ |
$4.98157$ |
$[1, 0, 0, -973697, -291938583]$ |
\(y^2+xy=x^3-973697x-291938583\) |
2.3.0.a.1, 156.6.0.?, 328.6.0.?, 12792.12.0.? |
$[ ]$ |
41574.t2 |
41574s1 |
41574.t |
41574s |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{10} \cdot 3^{3} \cdot 13^{9} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$12792$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$725760$ |
$2.079681$ |
$56300788871783/102108404736$ |
$0.94172$ |
$4.49538$ |
$[1, 0, 0, 134943, -27860535]$ |
\(y^2+xy=x^3+134943x-27860535\) |
2.3.0.a.1, 78.6.0.?, 328.6.0.?, 12792.12.0.? |
$[ ]$ |
41574.u1 |
41574u1 |
41574.u |
41574u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( 2^{2} \cdot 3^{9} \cdot 13^{9} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6396$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$718848$ |
$1.862719$ |
$5725732069/3228012$ |
$0.94872$ |
$4.28320$ |
$[1, 0, 0, -81884, -1455468]$ |
\(y^2+xy=x^3-81884x-1455468\) |
6396.2.0.? |
$[ ]$ |