| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 412984.a1 |
412984a1 |
412984.a |
412984a |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 11^{2} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$4.412633949$ |
$1$ |
|
$0$ |
$2875392$ |
$1.407219$ |
$1317006/1573$ |
$0.79865$ |
$3.05031$ |
$[0, 0, 0, 10469, -425258]$ |
\(y^2=x^3+10469x-425258\) |
104.2.0.? |
$[(3534/5, 246202/5)]$ |
| 412984.b1 |
412984b1 |
412984.b |
412984b |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11^{2} \cdot 13 \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2772480$ |
$1.732508$ |
$32000/1573$ |
$0.70300$ |
$3.40852$ |
$[0, 1, 0, 11432, 4314057]$ |
\(y^2=x^3+x^2+11432x+4314057\) |
494.2.0.? |
$[ ]$ |
| 412984.c1 |
412984c1 |
412984.c |
412984c |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 11 \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1144$ |
$2$ |
$0$ |
$21.28958769$ |
$1$ |
|
$0$ |
$1216512$ |
$1.446671$ |
$-162365474/143$ |
$0.83046$ |
$3.41795$ |
$[0, 1, 0, -52104, -4598672]$ |
\(y^2=x^3+x^2-52104x-4598672\) |
1144.2.0.? |
$[(27096478179/6947, 4015589920010282/6947)]$ |
| 412984.d1 |
412984d1 |
412984.d |
412984d |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11^{5} \cdot 13 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$0.199417364$ |
$1$ |
|
$6$ |
$453600$ |
$0.862185$ |
$-2481040788736/2093663$ |
$0.85332$ |
$2.87697$ |
$[0, -1, 0, -5060, 140341]$ |
\(y^2=x^3-x^2-5060x+140341\) |
286.2.0.? |
$[(30, 121)]$ |
| 412984.e1 |
412984e1 |
412984.e |
412984e |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11 \cdot 13 \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$75168$ |
$-0.120005$ |
$-1668352/143$ |
$0.61355$ |
$1.78846$ |
$[0, -1, 0, -44, -107]$ |
\(y^2=x^3-x^2-44x-107\) |
286.2.0.? |
$[ ]$ |
| 412984.f1 |
412984f1 |
412984.f |
412984f |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 11 \cdot 13^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1048320$ |
$1.538639$ |
$-6072054784/1859$ |
$0.86901$ |
$3.53714$ |
$[0, -1, 0, -87121, -9871291]$ |
\(y^2=x^3-x^2-87121x-9871291\) |
22.2.0.a.1 |
$[ ]$ |
| 412984.g1 |
412984g1 |
412984.g |
412984g |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{8} \cdot 11^{7} \cdot 13^{2} \cdot 19^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1.398339595$ |
$1$ |
|
$14$ |
$7983360$ |
$2.473541$ |
$-10333900063744/3293331899$ |
$0.95247$ |
$4.14634$ |
$[0, -1, 0, -1040161, -508120603]$ |
\(y^2=x^3-x^2-1040161x-508120603\) |
22.2.0.a.1 |
$[(10919, 1135706), (1481, 34606)]$ |
| 412984.h1 |
412984h1 |
412984.h |
412984h |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 11^{3} \cdot 13^{4} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$1672$ |
$12$ |
$0$ |
$6.946887662$ |
$1$ |
|
$1$ |
$8294400$ |
$2.557220$ |
$54861686071812/722279129$ |
$0.88370$ |
$4.34871$ |
$[0, 0, 0, -2880419, -1860092210]$ |
\(y^2=x^3-2880419x-1860092210\) |
2.3.0.a.1, 8.6.0.d.1, 418.6.0.?, 1672.12.0.? |
$[(-51882/7, 564850/7)]$ |
| 412984.h2 |
412984h2 |
412984.h |
412984h |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 11^{6} \cdot 13^{2} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$1672$ |
$12$ |
$0$ |
$13.89377532$ |
$1$ |
|
$1$ |
$16588800$ |
$2.903793$ |
$-97814868786/108081165049$ |
$1.01326$ |
$4.49709$ |
$[0, 0, 0, -440059, -4911030282]$ |
\(y^2=x^3-440059x-4911030282\) |
2.3.0.a.1, 8.6.0.a.1, 836.6.0.?, 1672.12.0.? |
$[(57716894/175, 165494565522/175)]$ |
| 412984.i1 |
412984i2 |
412984.i |
412984i |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 11^{6} \cdot 13 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10868$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1367040$ |
$1.416277$ |
$40478978988/23030293$ |
$0.99252$ |
$3.10791$ |
$[0, 0, 0, -13699, 80142]$ |
\(y^2=x^3-13699x+80142\) |
2.3.0.a.1, 572.6.0.?, 836.6.0.?, 988.6.0.?, 10868.12.0.? |
$[ ]$ |
| 412984.i2 |
412984i1 |
412984.i |
412984i |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 11^{3} \cdot 13^{2} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10868$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$683520$ |
$1.069704$ |
$42323982192/224939$ |
$0.88423$ |
$3.00415$ |
$[0, 0, 0, -8759, -314070]$ |
\(y^2=x^3-8759x-314070\) |
2.3.0.a.1, 418.6.0.?, 572.6.0.?, 988.6.0.?, 10868.12.0.? |
$[ ]$ |
| 412984.j1 |
412984j2 |
412984.j |
412984j |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 11^{6} \cdot 13 \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10868$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$25973760$ |
$2.888496$ |
$40478978988/23030293$ |
$0.99252$ |
$4.47411$ |
$[0, 0, 0, -4945339, -549693978]$ |
\(y^2=x^3-4945339x-549693978\) |
2.3.0.a.1, 572.6.0.?, 836.6.0.?, 988.6.0.?, 10868.12.0.? |
$[ ]$ |
| 412984.j2 |
412984j1 |
412984.j |
412984j |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 11^{3} \cdot 13^{2} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10868$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$12986880$ |
$2.541924$ |
$42323982192/224939$ |
$0.88423$ |
$4.37035$ |
$[0, 0, 0, -3161999, 2154206130]$ |
\(y^2=x^3-3161999x+2154206130\) |
2.3.0.a.1, 418.6.0.?, 572.6.0.?, 988.6.0.?, 10868.12.0.? |
$[ ]$ |
| 412984.k1 |
412984k1 |
412984.k |
412984k |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11^{5} \cdot 13 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8618400$ |
$2.334404$ |
$-2481040788736/2093663$ |
$0.85332$ |
$4.24318$ |
$[0, 1, 0, -1826780, -951638491]$ |
\(y^2=x^3+x^2-1826780x-951638491\) |
286.2.0.? |
$[ ]$ |
| 412984.l1 |
412984l1 |
412984.l |
412984l |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11 \cdot 13 \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$2.483939302$ |
$1$ |
|
$2$ |
$1428192$ |
$1.352215$ |
$-1668352/143$ |
$0.61355$ |
$3.15467$ |
$[0, 1, 0, -16004, 829685]$ |
\(y^2=x^3+x^2-16004x+829685\) |
286.2.0.? |
$[(842, 24187)]$ |
| 412984.m1 |
412984m1 |
412984.m |
412984m |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{11} \cdot 11^{4} \cdot 13 \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$4.153948753$ |
$1$ |
|
$0$ |
$5713920$ |
$2.348881$ |
$-620302509218/68710213$ |
$0.83662$ |
$4.06923$ |
$[0, 1, 0, -814536, 308576048]$ |
\(y^2=x^3+x^2-814536x+308576048\) |
104.2.0.? |
$[(6799/3, 301796/3)]$ |
| 412984.n1 |
412984n1 |
412984.n |
412984n |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 11 \cdot 13^{5} \cdot 19^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5434$ |
$2$ |
$0$ |
$1.376502330$ |
$1$ |
|
$6$ |
$30067200$ |
$2.830799$ |
$15447758267216896/28013685557$ |
$0.91054$ |
$4.67770$ |
$[0, -1, 0, -11893265, 15766215701]$ |
\(y^2=x^3-x^2-11893265x+15766215701\) |
5434.2.0.? |
$[(16951/3, 178334/3), (1609, 28158)]$ |
| 412984.o1 |
412984o1 |
412984.o |
412984o |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 11 \cdot 13 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5434$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2695680$ |
$1.380274$ |
$120472576/2717$ |
$0.76651$ |
$3.23395$ |
$[0, -1, 0, -23585, 1374581]$ |
\(y^2=x^3-x^2-23585x+1374581\) |
5434.2.0.? |
$[ ]$ |
| 412984.p1 |
412984p2 |
412984.p |
412984p |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{11} \cdot 11^{2} \cdot 13 \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$21736$ |
$12$ |
$0$ |
$12.49354034$ |
$1$ |
|
$1$ |
$4239360$ |
$1.975477$ |
$13141451234/567853$ |
$0.84071$ |
$3.75761$ |
$[0, -1, 0, -225384, 39692204]$ |
\(y^2=x^3-x^2-225384x+39692204\) |
2.3.0.a.1, 104.6.0.?, 836.6.0.?, 21736.12.0.? |
$[(16642949/58, 67587154635/58)]$ |
| 412984.p2 |
412984p1 |
412984.p |
412984p |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{10} \cdot 11 \cdot 13^{2} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$21736$ |
$12$ |
$0$ |
$6.246770172$ |
$1$ |
|
$1$ |
$2119680$ |
$1.628902$ |
$122657188/35321$ |
$0.77964$ |
$3.34255$ |
$[0, -1, 0, -37664, -1981636]$ |
\(y^2=x^3-x^2-37664x-1981636\) |
2.3.0.a.1, 104.6.0.?, 418.6.0.?, 21736.12.0.? |
$[(40330/13, 3517584/13)]$ |
| 412984.q1 |
412984q1 |
412984.q |
412984q |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11^{2} \cdot 13 \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$145920$ |
$0.260288$ |
$32000/1573$ |
$0.70300$ |
$2.04232$ |
$[0, -1, 0, 32, -639]$ |
\(y^2=x^3-x^2+32x-639\) |
494.2.0.? |
$[ ]$ |
| 412984.r1 |
412984r1 |
412984.r |
412984r |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( 2^{8} \cdot 11 \cdot 13^{2} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10868$ |
$12$ |
$0$ |
$10.61304886$ |
$1$ |
|
$1$ |
$1658880$ |
$1.496796$ |
$61918288/35321$ |
$0.75038$ |
$3.18248$ |
$[0, -1, 0, -18892, -113100]$ |
\(y^2=x^3-x^2-18892x-113100\) |
2.3.0.a.1, 52.6.0.b.1, 418.6.0.?, 10868.12.0.? |
$[(-1066875/94, 520776795/94)]$ |
| 412984.r2 |
412984r2 |
412984.r |
412984r |
$2$ |
$2$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 11^{2} \cdot 13 \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10868$ |
$12$ |
$0$ |
$21.22609772$ |
$1$ |
|
$1$ |
$3317760$ |
$1.843370$ |
$967217468/567853$ |
$0.81618$ |
$3.50224$ |
$[0, -1, 0, 74968, -976612]$ |
\(y^2=x^3-x^2+74968x-976612\) |
2.3.0.a.1, 52.6.0.a.1, 836.6.0.?, 10868.12.0.? |
$[(99050039689/6245, 31346847210940338/6245)]$ |
| 412984.s1 |
412984s1 |
412984.s |
412984s |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 11^{2} \cdot 13 \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4769280$ |
$2.025475$ |
$-32327511017728/10789207$ |
$0.85028$ |
$3.98624$ |
$[0, -1, 0, -603712, -180399027]$ |
\(y^2=x^3-x^2-603712x-180399027\) |
494.2.0.? |
$[ ]$ |