Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
402800.a1 |
402800a1 |
402800.a |
402800a |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$2.032041713$ |
$1$ |
|
$2$ |
$1188864$ |
$1.271448$ |
$6007345507825/16112$ |
$0.87149$ |
$3.42313$ |
$[0, 1, 0, -51808, 4521588]$ |
\(y^2=x^3+x^2-51808x+4521588\) |
4028.2.0.? |
$[(132, 18)]$ |
402800.b1 |
402800b1 |
402800.b |
402800b |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{13} \cdot 5^{6} \cdot 19^{4} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$424$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1410048$ |
$1.549177$ |
$-822656953/13814026$ |
$0.86973$ |
$3.24683$ |
$[0, 1, 0, -7808, -1457612]$ |
\(y^2=x^3+x^2-7808x-1457612\) |
424.2.0.? |
$[ ]$ |
402800.c1 |
402800c2 |
402800.c |
402800c |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{13} \cdot 5^{8} \cdot 19^{3} \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120840$ |
$16$ |
$0$ |
$0.922160368$ |
$1$ |
|
$4$ |
$6469632$ |
$2.290833$ |
$-474570252234001/51057367150$ |
$0.88075$ |
$4.02429$ |
$[0, 1, 0, -650008, 219443988]$ |
\(y^2=x^3+x^2-650008x+219443988\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 8056.2.0.?, 24168.8.0.?, 120840.16.0.? |
$[(68, 13250)]$ |
402800.c2 |
402800c1 |
402800.c |
402800c |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{15} \cdot 5^{12} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120840$ |
$16$ |
$0$ |
$2.766481105$ |
$1$ |
|
$2$ |
$2156544$ |
$1.741528$ |
$215892017999/125875000$ |
$0.88140$ |
$3.41483$ |
$[0, 1, 0, 49992, -356012]$ |
\(y^2=x^3+x^2+49992x-356012\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 8056.2.0.?, 24168.8.0.?, 120840.16.0.? |
$[(1668, 68750)]$ |
402800.d1 |
402800d1 |
402800.d |
402800d |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 5^{8} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3640320$ |
$1.911610$ |
$34757337195625/16112$ |
$0.96810$ |
$4.05795$ |
$[0, 1, 0, -795208, -273206412]$ |
\(y^2=x^3+x^2-795208x-273206412\) |
4028.2.0.? |
$[ ]$ |
402800.e1 |
402800e1 |
402800.e |
402800e |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{12} \cdot 5^{2} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$3.138603902$ |
$1$ |
|
$6$ |
$156672$ |
$0.254363$ |
$5151505/1007$ |
$0.68834$ |
$2.09136$ |
$[0, 1, 0, -168, 628]$ |
\(y^2=x^3+x^2-168x+628\) |
4028.2.0.? |
$[(4, 6), (12, 22)]$ |
402800.f1 |
402800f1 |
402800.f |
402800f |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{12} \cdot 5^{10} \cdot 19^{5} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$16051200$ |
$2.614449$ |
$1044999673815625/131233247$ |
$0.94871$ |
$4.57106$ |
$[0, 1, 0, -7230208, 7479753588]$ |
\(y^2=x^3+x^2-7230208x+7479753588\) |
4028.2.0.? |
$[ ]$ |
402800.g1 |
402800g1 |
402800.g |
402800g |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{14} \cdot 19 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2014$ |
$2$ |
$0$ |
$4.513178436$ |
$1$ |
|
$2$ |
$6248448$ |
$2.244804$ |
$-697942841638169344/1104946484375$ |
$0.95471$ |
$4.14676$ |
$[0, -1, 0, -1164158, 484515187]$ |
\(y^2=x^3-x^2-1164158x+484515187\) |
2014.2.0.? |
$[(477, 6125)]$ |
402800.h1 |
402800h1 |
402800.h |
402800h |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{8} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2014$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$133632$ |
$0.562904$ |
$6243584/25175$ |
$0.66088$ |
$2.31382$ |
$[0, -1, 0, 242, -3613]$ |
\(y^2=x^3-x^2+242x-3613\) |
2014.2.0.? |
$[ ]$ |
402800.i1 |
402800i1 |
402800.i |
402800i |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{13} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$2.333871456$ |
$1$ |
|
$0$ |
$628992$ |
$1.229734$ |
$-3538944/78671875$ |
$1.09130$ |
$2.94934$ |
$[0, 0, 0, -200, 213375]$ |
\(y^2=x^3-200x+213375\) |
10070.2.0.? |
$[(145/3, 12500/3)]$ |
402800.j1 |
402800j1 |
402800.j |
402800j |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{22} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$5.124365390$ |
$1$ |
|
$2$ |
$2419200$ |
$1.896603$ |
$3871353825/1031168$ |
$0.81879$ |
$3.60207$ |
$[0, 0, 0, -111875, 10581250]$ |
\(y^2=x^3-111875x+10581250\) |
4028.2.0.? |
$[(279, 1042)]$ |
402800.k1 |
402800k1 |
402800.k |
402800k |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{7} \cdot 19^{3} \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1313280$ |
$1.577913$ |
$38981965824/5105736715$ |
$0.91872$ |
$3.27232$ |
$[0, 0, 0, 4450, -1715125]$ |
\(y^2=x^3+4450x-1715125\) |
10070.2.0.? |
$[ ]$ |
402800.l1 |
402800l1 |
402800.l |
402800l |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{11} \cdot 5^{8} \cdot 19^{3} \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$1.055298803$ |
$1$ |
|
$8$ |
$884736$ |
$1.471689$ |
$-9636491538/9088175$ |
$0.79916$ |
$3.19513$ |
$[0, 0, 0, -14075, 1042250]$ |
\(y^2=x^3-14075x+1042250\) |
8056.2.0.? |
$[(295, 4750), (10, 950)]$ |
402800.m1 |
402800m1 |
402800.m |
402800m |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{14} \cdot 5^{8} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$4.226807015$ |
$1$ |
|
$4$ |
$2649600$ |
$2.043415$ |
$469523855873385/4028$ |
$0.90905$ |
$4.25966$ |
$[0, 0, 0, -1893875, 1003171250]$ |
\(y^2=x^3-1893875x+1003171250\) |
4028.2.0.? |
$[(775, 950), (7150/3, 100/3)]$ |
402800.n1 |
402800n1 |
402800.n |
402800n |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{12} \cdot 5^{6} \cdot 19^{3} \cdot 53^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1192320$ |
$1.583775$ |
$25102282752/19266931$ |
$0.88962$ |
$3.24810$ |
$[0, 0, 0, 24400, 838000]$ |
\(y^2=x^3+24400x+838000\) |
38.2.0.a.1 |
$[ ]$ |
402800.o1 |
402800o1 |
402800.o |
402800o |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{8} \cdot 5^{2} \cdot 19^{4} \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$106$ |
$2$ |
$0$ |
$2.200308224$ |
$1$ |
|
$4$ |
$195840$ |
$0.743715$ |
$19437649920/6907013$ |
$0.86018$ |
$2.51465$ |
$[0, 0, 0, -1040, -8020]$ |
\(y^2=x^3-1040x-8020\) |
106.2.0.? |
$[(-26, 38), (526/3, 9766/3)]$ |
402800.p1 |
402800p1 |
402800.p |
402800p |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{17} \cdot 5^{8} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$2.036795812$ |
$1$ |
|
$8$ |
$645120$ |
$1.312637$ |
$104487111/805600$ |
$0.82728$ |
$3.01796$ |
$[0, 0, 0, 3925, 332250]$ |
\(y^2=x^3+3925x+332250\) |
8056.2.0.? |
$[(245, 4000), (95, 1250)]$ |
402800.q1 |
402800q1 |
402800.q |
402800q |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{12} \cdot 5^{9} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$3.351473495$ |
$1$ |
|
$8$ |
$389120$ |
$1.157969$ |
$132651/1007$ |
$0.73359$ |
$2.87404$ |
$[0, 0, 0, 2125, 131250]$ |
\(y^2=x^3+2125x+131250\) |
10070.2.0.? |
$[(-25, 250), (25/3, 10000/3)]$ |
402800.r1 |
402800r1 |
402800.r |
402800r |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{12} \cdot 5^{3} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$0.690458108$ |
$1$ |
|
$4$ |
$77824$ |
$0.353250$ |
$132651/1007$ |
$0.73359$ |
$2.12582$ |
$[0, 0, 0, 85, 1050]$ |
\(y^2=x^3+85x+1050\) |
10070.2.0.? |
$[(5, 40)]$ |
402800.s1 |
402800s1 |
402800.s |
402800s |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 5^{10} \cdot 19 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$2.769144342$ |
$1$ |
|
$2$ |
$2211840$ |
$1.997101$ |
$481824576900/2828663$ |
$1.01167$ |
$3.86843$ |
$[0, 0, 0, -351875, 79931250]$ |
\(y^2=x^3-351875x+79931250\) |
4028.2.0.? |
$[(306, 954)]$ |
402800.t1 |
402800t1 |
402800.t |
402800t |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 5^{4} \cdot 19 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$3.995417360$ |
$1$ |
|
$2$ |
$442368$ |
$1.192383$ |
$481824576900/2828663$ |
$1.01167$ |
$3.12021$ |
$[0, 0, 0, -14075, 639450]$ |
\(y^2=x^3-14075x+639450\) |
4028.2.0.? |
$[(54, 192)]$ |
402800.u1 |
402800u1 |
402800.u |
402800u |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{8} \cdot 5^{11} \cdot 19^{3} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$2.000137$ |
$-5382606759618384/1136021875$ |
$0.89223$ |
$3.98445$ |
$[0, 0, 0, -579575, -169860250]$ |
\(y^2=x^3-579575x-169860250\) |
10070.2.0.? |
$[ ]$ |
402800.v1 |
402800v1 |
402800.v |
402800v |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{8} \cdot 5^{8} \cdot 19^{4} \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$106$ |
$2$ |
$0$ |
$1.609996545$ |
$1$ |
|
$8$ |
$979200$ |
$1.548435$ |
$19437649920/6907013$ |
$0.86018$ |
$3.26286$ |
$[0, 0, 0, -26000, -1002500]$ |
\(y^2=x^3-26000x-1002500\) |
106.2.0.? |
$[(250, 2850), (-54, 494)]$ |
402800.w1 |
402800w1 |
402800.w |
402800w |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{14} \cdot 5^{2} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$6.713939490$ |
$1$ |
|
$4$ |
$529920$ |
$1.238695$ |
$469523855873385/4028$ |
$0.90905$ |
$3.51144$ |
$[0, 0, 0, -75755, 8025370]$ |
\(y^2=x^3-75755x+8025370\) |
4028.2.0.? |
$[(159, 2), (-5409/5, 472486/5)]$ |
402800.x1 |
402800x1 |
402800.x |
402800x |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{7} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$3.185207488$ |
$1$ |
|
$0$ |
$154368$ |
$0.534791$ |
$-226492416/5035$ |
$0.81086$ |
$2.45658$ |
$[0, 0, 0, -800, 8875]$ |
\(y^2=x^3-800x+8875\) |
10070.2.0.? |
$[(145/3, 350/3)]$ |
402800.y1 |
402800y1 |
402800.y |
402800y |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{22} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$2.428632903$ |
$1$ |
|
$2$ |
$483840$ |
$1.091883$ |
$3871353825/1031168$ |
$0.81879$ |
$2.85385$ |
$[0, 0, 0, -4475, 84650]$ |
\(y^2=x^3-4475x+84650\) |
4028.2.0.? |
$[(55, 70)]$ |
402800.z1 |
402800z1 |
402800.z |
402800z |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{6} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2014$ |
$2$ |
$0$ |
$1.045463149$ |
$1$ |
|
$2$ |
$165888$ |
$0.293933$ |
$-87808/1007$ |
$0.77624$ |
$2.08023$ |
$[0, 1, 0, -58, 763]$ |
\(y^2=x^3+x^2-58x+763\) |
2014.2.0.? |
$[(3, 25)]$ |
402800.ba1 |
402800ba1 |
402800.ba |
402800ba |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{6} \cdot 19 \cdot 53^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2014$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8547840$ |
$2.298962$ |
$-36089179133728000/22319511656903$ |
$0.93986$ |
$3.97336$ |
$[0, 1, 0, -433708, 157977463]$ |
\(y^2=x^3+x^2-433708x+157977463\) |
2014.2.0.? |
$[ ]$ |
402800.bb1 |
402800bb1 |
402800.bb |
402800bb |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{6} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2014$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$255744$ |
$0.546183$ |
$-1372000000/1007$ |
$0.81544$ |
$2.59333$ |
$[0, 1, 0, -1458, 20963]$ |
\(y^2=x^3+x^2-1458x+20963\) |
2014.2.0.? |
$[ ]$ |
402800.bc1 |
402800bc1 |
402800.bc |
402800bc |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{12} \cdot 5^{4} \cdot 19^{5} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3210240$ |
$1.809729$ |
$1044999673815625/131233247$ |
$0.94871$ |
$3.82284$ |
$[0, -1, 0, -289208, 59953712]$ |
\(y^2=x^3-x^2-289208x+59953712\) |
4028.2.0.? |
$[ ]$ |
402800.bd1 |
402800bd1 |
402800.bd |
402800bd |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{12} \cdot 5^{8} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$12.67414276$ |
$1$ |
|
$4$ |
$783360$ |
$1.059082$ |
$5151505/1007$ |
$0.68834$ |
$2.83957$ |
$[0, -1, 0, -4208, 86912]$ |
\(y^2=x^3-x^2-4208x+86912\) |
4028.2.0.? |
$[(58, 186), (-14, 378)]$ |
402800.be1 |
402800be1 |
402800.be |
402800be |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{11} \cdot 5^{10} \cdot 19^{3} \cdot 53^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$110592000$ |
$3.585609$ |
$-507557962775763748021682/1792751804054375$ |
$0.97584$ |
$5.56827$ |
$[0, -1, 0, -527599008, 4664679060512]$ |
\(y^2=x^3-x^2-527599008x+4664679060512\) |
8056.2.0.? |
$[ ]$ |
402800.bf1 |
402800bf1 |
402800.bf |
402800bf |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{15} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1769472$ |
$1.463900$ |
$-111284641/5035000$ |
$0.81955$ |
$3.16699$ |
$[0, -1, 0, -4008, 870512]$ |
\(y^2=x^3-x^2-4008x+870512\) |
8056.2.0.? |
$[ ]$ |
402800.bg1 |
402800bg1 |
402800.bg |
402800bg |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{31} \cdot 5^{8} \cdot 19 \cdot 53^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$4.523568371$ |
$1$ |
|
$2$ |
$15759360$ |
$2.785683$ |
$16665594512227991/37075851673600$ |
$0.97804$ |
$4.36781$ |
$[0, -1, 0, 2128592, 2015205312]$ |
\(y^2=x^3-x^2+2128592x+2015205312\) |
8056.2.0.? |
$[(89608/3, 27136000/3), (5448/7, 16281600/7)]$ |
402800.bh1 |
402800bh1 |
402800.bh |
402800bh |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{13} \cdot 5^{6} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$9.648755998$ |
$1$ |
|
$4$ |
$405504$ |
$0.948997$ |
$-192100033/2014$ |
$0.77576$ |
$2.87194$ |
$[0, -1, 0, -4808, -127888]$ |
\(y^2=x^3-x^2-4808x-127888\) |
8056.2.0.? |
$[(82, 150), (217, 3000)]$ |
402800.bi1 |
402800bi1 |
402800.bi |
402800bi |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 5^{2} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$728064$ |
$1.106890$ |
$34757337195625/16112$ |
$0.96810$ |
$3.30973$ |
$[0, -1, 0, -31808, -2172928]$ |
\(y^2=x^3-x^2-31808x-2172928\) |
4028.2.0.? |
$[ ]$ |
402800.bj1 |
402800bj1 |
402800.bj |
402800bj |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$11.64391326$ |
$1$ |
|
$0$ |
$5944320$ |
$2.076168$ |
$6007345507825/16112$ |
$0.87149$ |
$4.17134$ |
$[0, -1, 0, -1295208, 567788912]$ |
\(y^2=x^3-x^2-1295208x+567788912\) |
4028.2.0.? |
$[(2451818/61, 12855534/61)]$ |
402800.bk1 |
402800bk1 |
402800.bk |
402800bk |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{10} \cdot 5^{17} \cdot 19^{3} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11252736$ |
$2.613968$ |
$29933664154027196/17750341796875$ |
$0.93966$ |
$4.22478$ |
$[0, -1, 0, 1629992, -126391488]$ |
\(y^2=x^3-x^2+1629992x-126391488\) |
10070.2.0.? |
$[ ]$ |
402800.bl1 |
402800bl1 |
402800.bl |
402800bl |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{22} \cdot 5^{7} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1152000$ |
$1.510798$ |
$-28344726649/5155840$ |
$0.79783$ |
$3.27869$ |
$[0, -1, 0, -25408, -1778688]$ |
\(y^2=x^3-x^2-25408x-1778688\) |
10070.2.0.? |
$[ ]$ |
402800.bm1 |
402800bm1 |
402800.bm |
402800bm |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{10} \cdot 5^{9} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10070$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$635904$ |
$1.076248$ |
$-445138564/125875$ |
$0.72918$ |
$2.85908$ |
$[0, -1, 0, -4008, 120512]$ |
\(y^2=x^3-x^2-4008x+120512\) |
10070.2.0.? |
$[ ]$ |
402800.bn1 |
402800bn1 |
402800.bn |
402800bn |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{4} \cdot 5^{7} \cdot 19^{4} \cdot 53^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$760$ |
$48$ |
$0$ |
$1$ |
$49$ |
$7$ |
$1$ |
$50853888$ |
$3.272282$ |
$15719853405797699917103104/5141476872005$ |
$1.00954$ |
$5.45832$ |
$[0, -1, 0, -328767033, -2294350499188]$ |
\(y^2=x^3-x^2-328767033x-2294350499188\) |
2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.24.0.e.1, 152.12.0.?, $\ldots$ |
$[ ]$ |
402800.bn2 |
402800bn2 |
402800.bn |
402800bn |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{8} \cdot 5^{8} \cdot 19^{2} \cdot 53^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$760$ |
$48$ |
$0$ |
$1$ |
$49$ |
$7$ |
$1$ |
$101707776$ |
$3.618855$ |
$-982086337322657688259024/561893705962533025$ |
$0.97095$ |
$5.45837$ |
$[0, -1, 0, -328721908, -2295011851188]$ |
\(y^2=x^3-x^2-328721908x-2295011851188\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 40.24.0.bc.1, 152.12.0.?, $\ldots$ |
$[ ]$ |
402800.bo1 |
402800bo1 |
402800.bo |
402800bo |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{25} \cdot 5^{6} \cdot 19^{3} \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8056$ |
$2$ |
$0$ |
$4.421550549$ |
$1$ |
|
$2$ |
$4313088$ |
$2.004169$ |
$4175614324727/2978013184$ |
$0.90916$ |
$3.64435$ |
$[0, -1, 0, 134192, -9165888]$ |
\(y^2=x^3-x^2+134192x-9165888\) |
8056.2.0.? |
$[(117, 2850)]$ |
402800.bp1 |
402800bp1 |
402800.bp |
402800bp |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( - 2^{4} \cdot 5^{10} \cdot 19^{3} \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2014$ |
$2$ |
$0$ |
$6.163105891$ |
$1$ |
|
$0$ |
$2626560$ |
$1.325640$ |
$-70628979456/227204375$ |
$0.81708$ |
$3.04433$ |
$[0, 0, 0, -5425, 393875]$ |
\(y^2=x^3-5425x+393875\) |
2014.2.0.? |
$[(16570/3, 2131325/3)]$ |