Learn more

Refine search


Results (44 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
402800.a1 402800.a \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $2.032041713$ $[0, 1, 0, -51808, 4521588]$ \(y^2=x^3+x^2-51808x+4521588\) 4028.2.0.? $[(132, 18)]$
402800.b1 402800.b \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -7808, -1457612]$ \(y^2=x^3+x^2-7808x-1457612\) 424.2.0.? $[ ]$
402800.c1 402800.c \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.922160368$ $[0, 1, 0, -650008, 219443988]$ \(y^2=x^3+x^2-650008x+219443988\) 3.4.0.a.1, 60.8.0-3.a.1.1, 8056.2.0.?, 24168.8.0.?, 120840.16.0.? $[(68, 13250)]$
402800.c2 402800.c \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $2.766481105$ $[0, 1, 0, 49992, -356012]$ \(y^2=x^3+x^2+49992x-356012\) 3.4.0.a.1, 60.8.0-3.a.1.2, 8056.2.0.?, 24168.8.0.?, 120840.16.0.? $[(1668, 68750)]$
402800.d1 402800.d \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -795208, -273206412]$ \(y^2=x^3+x^2-795208x-273206412\) 4028.2.0.? $[ ]$
402800.e1 402800.e \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $3.138603902$ $[0, 1, 0, -168, 628]$ \(y^2=x^3+x^2-168x+628\) 4028.2.0.? $[(4, 6), (12, 22)]$
402800.f1 402800.f \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -7230208, 7479753588]$ \(y^2=x^3+x^2-7230208x+7479753588\) 4028.2.0.? $[ ]$
402800.g1 402800.g \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $4.513178436$ $[0, -1, 0, -1164158, 484515187]$ \(y^2=x^3-x^2-1164158x+484515187\) 2014.2.0.? $[(477, 6125)]$
402800.h1 402800.h \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 242, -3613]$ \(y^2=x^3-x^2+242x-3613\) 2014.2.0.? $[ ]$
402800.i1 402800.i \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $2.333871456$ $[0, 0, 0, -200, 213375]$ \(y^2=x^3-200x+213375\) 10070.2.0.? $[(145/3, 12500/3)]$
402800.j1 402800.j \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $5.124365390$ $[0, 0, 0, -111875, 10581250]$ \(y^2=x^3-111875x+10581250\) 4028.2.0.? $[(279, 1042)]$
402800.k1 402800.k \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 4450, -1715125]$ \(y^2=x^3+4450x-1715125\) 10070.2.0.? $[ ]$
402800.l1 402800.l \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $1.055298803$ $[0, 0, 0, -14075, 1042250]$ \(y^2=x^3-14075x+1042250\) 8056.2.0.? $[(295, 4750), (10, 950)]$
402800.m1 402800.m \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $4.226807015$ $[0, 0, 0, -1893875, 1003171250]$ \(y^2=x^3-1893875x+1003171250\) 4028.2.0.? $[(775, 950), (7150/3, 100/3)]$
402800.n1 402800.n \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 24400, 838000]$ \(y^2=x^3+24400x+838000\) 38.2.0.a.1 $[ ]$
402800.o1 402800.o \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $2.200308224$ $[0, 0, 0, -1040, -8020]$ \(y^2=x^3-1040x-8020\) 106.2.0.? $[(-26, 38), (526/3, 9766/3)]$
402800.p1 402800.p \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $2.036795812$ $[0, 0, 0, 3925, 332250]$ \(y^2=x^3+3925x+332250\) 8056.2.0.? $[(245, 4000), (95, 1250)]$
402800.q1 402800.q \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $3.351473495$ $[0, 0, 0, 2125, 131250]$ \(y^2=x^3+2125x+131250\) 10070.2.0.? $[(-25, 250), (25/3, 10000/3)]$
402800.r1 402800.r \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.690458108$ $[0, 0, 0, 85, 1050]$ \(y^2=x^3+85x+1050\) 10070.2.0.? $[(5, 40)]$
402800.s1 402800.s \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $2.769144342$ $[0, 0, 0, -351875, 79931250]$ \(y^2=x^3-351875x+79931250\) 4028.2.0.? $[(306, 954)]$
402800.t1 402800.t \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $3.995417360$ $[0, 0, 0, -14075, 639450]$ \(y^2=x^3-14075x+639450\) 4028.2.0.? $[(54, 192)]$
402800.u1 402800.u \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -579575, -169860250]$ \(y^2=x^3-579575x-169860250\) 10070.2.0.? $[ ]$
402800.v1 402800.v \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $1.609996545$ $[0, 0, 0, -26000, -1002500]$ \(y^2=x^3-26000x-1002500\) 106.2.0.? $[(250, 2850), (-54, 494)]$
402800.w1 402800.w \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $6.713939490$ $[0, 0, 0, -75755, 8025370]$ \(y^2=x^3-75755x+8025370\) 4028.2.0.? $[(159, 2), (-5409/5, 472486/5)]$
402800.x1 402800.x \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $3.185207488$ $[0, 0, 0, -800, 8875]$ \(y^2=x^3-800x+8875\) 10070.2.0.? $[(145/3, 350/3)]$
402800.y1 402800.y \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $2.428632903$ $[0, 0, 0, -4475, 84650]$ \(y^2=x^3-4475x+84650\) 4028.2.0.? $[(55, 70)]$
402800.z1 402800.z \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.045463149$ $[0, 1, 0, -58, 763]$ \(y^2=x^3+x^2-58x+763\) 2014.2.0.? $[(3, 25)]$
402800.ba1 402800.ba \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -433708, 157977463]$ \(y^2=x^3+x^2-433708x+157977463\) 2014.2.0.? $[ ]$
402800.bb1 402800.bb \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1458, 20963]$ \(y^2=x^3+x^2-1458x+20963\) 2014.2.0.? $[ ]$
402800.bc1 402800.bc \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -289208, 59953712]$ \(y^2=x^3-x^2-289208x+59953712\) 4028.2.0.? $[ ]$
402800.bd1 402800.bd \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $12.67414276$ $[0, -1, 0, -4208, 86912]$ \(y^2=x^3-x^2-4208x+86912\) 4028.2.0.? $[(58, 186), (-14, 378)]$
402800.be1 402800.be \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -527599008, 4664679060512]$ \(y^2=x^3-x^2-527599008x+4664679060512\) 8056.2.0.? $[ ]$
402800.bf1 402800.bf \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4008, 870512]$ \(y^2=x^3-x^2-4008x+870512\) 8056.2.0.? $[ ]$
402800.bg1 402800.bg \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $4.523568371$ $[0, -1, 0, 2128592, 2015205312]$ \(y^2=x^3-x^2+2128592x+2015205312\) 8056.2.0.? $[(89608/3, 27136000/3), (5448/7, 16281600/7)]$
402800.bh1 402800.bh \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $2$ $\mathsf{trivial}$ $9.648755998$ $[0, -1, 0, -4808, -127888]$ \(y^2=x^3-x^2-4808x-127888\) 8056.2.0.? $[(82, 150), (217, 3000)]$
402800.bi1 402800.bi \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -31808, -2172928]$ \(y^2=x^3-x^2-31808x-2172928\) 4028.2.0.? $[ ]$
402800.bj1 402800.bj \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $11.64391326$ $[0, -1, 0, -1295208, 567788912]$ \(y^2=x^3-x^2-1295208x+567788912\) 4028.2.0.? $[(2451818/61, 12855534/61)]$
402800.bk1 402800.bk \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1629992, -126391488]$ \(y^2=x^3-x^2+1629992x-126391488\) 10070.2.0.? $[ ]$
402800.bl1 402800.bl \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -25408, -1778688]$ \(y^2=x^3-x^2-25408x-1778688\) 10070.2.0.? $[ ]$
402800.bm1 402800.bm \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4008, 120512]$ \(y^2=x^3-x^2-4008x+120512\) 10070.2.0.? $[ ]$
402800.bn1 402800.bn \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -328767033, -2294350499188]$ \(y^2=x^3-x^2-328767033x-2294350499188\) 2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.24.0.e.1, 152.12.0.?, $\ldots$ $[ ]$
402800.bn2 402800.bn \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -328721908, -2295011851188]$ \(y^2=x^3-x^2-328721908x-2295011851188\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 40.24.0.bc.1, 152.12.0.?, $\ldots$ $[ ]$
402800.bo1 402800.bo \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $4.421550549$ $[0, -1, 0, 134192, -9165888]$ \(y^2=x^3-x^2+134192x-9165888\) 8056.2.0.? $[(117, 2850)]$
402800.bp1 402800.bp \( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) $1$ $\mathsf{trivial}$ $6.163105891$ $[0, 0, 0, -5425, 393875]$ \(y^2=x^3-5425x+393875\) 2014.2.0.? $[(16570/3, 2131325/3)]$
  displayed columns for results