Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3952.a1 |
3952f1 |
3952.a |
3952f |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{13} \cdot 13 \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.159977756$ |
$1$ |
|
$22$ |
$3648$ |
$0.422908$ |
$-25334470953/9386$ |
$0.90338$ |
$3.89688$ |
$[0, 0, 0, -979, 11794]$ |
\(y^2=x^3-979x+11794\) |
104.2.0.? |
$[(17, 8), (23, 38)]$ |
3952.b1 |
3952a1 |
3952.b |
3952a |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.636363865$ |
$1$ |
|
$2$ |
$160$ |
$-0.555453$ |
$-4000000/247$ |
$0.76949$ |
$2.18254$ |
$[0, 1, 0, -8, 7]$ |
\(y^2=x^3+x^2-8x+7\) |
494.2.0.? |
$[(1, 1)]$ |
3952.c1 |
3952h1 |
3952.c |
3952h |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13^{5} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.589534411$ |
$1$ |
|
$2$ |
$1680$ |
$0.233699$ |
$10150866176/7054567$ |
$0.87568$ |
$3.11682$ |
$[0, 1, 0, 114, 247]$ |
\(y^2=x^3+x^2+114x+247\) |
494.2.0.? |
$[(3, 25)]$ |
3952.d1 |
3952e1 |
3952.d |
3952e |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{8} \cdot 13^{2} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.620027582$ |
$1$ |
|
$12$ |
$480$ |
$-0.180277$ |
$1769472/3211$ |
$1.10590$ |
$2.49822$ |
$[0, 0, 0, 16, -36]$ |
\(y^2=x^3+16x-36\) |
38.2.0.a.1 |
$[(5, 13), (2, 2)]$ |
3952.e1 |
3952d3 |
3952.e |
3952d |
$4$ |
$4$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( 2^{13} \cdot 13^{4} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3264$ |
$0.765377$ |
$969417177273/1085318$ |
$0.93818$ |
$4.33685$ |
$[0, 0, 0, -3299, -72862]$ |
\(y^2=x^3-3299x-72862\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 76.12.0.?, 104.24.0.?, $\ldots$ |
$[ ]$ |
3952.e2 |
3952d4 |
3952.e |
3952d |
$4$ |
$4$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( 2^{13} \cdot 13 \cdot 19^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3264$ |
$0.765377$ |
$345505073913/3388346$ |
$0.97212$ |
$4.21228$ |
$[0, 0, 0, -2339, 43170]$ |
\(y^2=x^3-2339x+43170\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.2, 104.24.0.?, $\ldots$ |
$[ ]$ |
3952.e3 |
3952d2 |
3952.e |
3952d |
$4$ |
$4$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( 2^{14} \cdot 13^{2} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$1632$ |
$0.418803$ |
$469097433/244036$ |
$0.96358$ |
$3.41514$ |
$[0, 0, 0, -259, -510]$ |
\(y^2=x^3-259x-510\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 76.12.0.?, 104.24.0.?, $\ldots$ |
$[ ]$ |
3952.e4 |
3952d1 |
3952.e |
3952d |
$4$ |
$4$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{16} \cdot 13 \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$1976$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$816$ |
$0.072229$ |
$6128487/3952$ |
$0.83799$ |
$2.89137$ |
$[0, 0, 0, 61, -62]$ |
\(y^2=x^3+61x-62\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.1, 76.12.0.?, $\ldots$ |
$[ ]$ |
3952.f1 |
3952b1 |
3952.f |
3952b |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13 \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$160$ |
$-0.629915$ |
$6912/247$ |
$0.75459$ |
$1.89814$ |
$[0, 0, 0, 1, -3]$ |
\(y^2=x^3+x-3\) |
494.2.0.? |
$[ ]$ |
3952.g1 |
3952c1 |
3952.g |
3952c |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13 \cdot 19^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$53040$ |
$2.325428$ |
$-328568038616615609088/546688785009341767$ |
$1.05426$ |
$6.20244$ |
$[0, 0, 0, -362249, -165197113]$ |
\(y^2=x^3-362249x-165197113\) |
494.2.0.? |
$[ ]$ |
3952.h1 |
3952j1 |
3952.h |
3952j |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{25} \cdot 13^{3} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7488$ |
$1.332048$ |
$-110931033861649/6497214464$ |
$0.94569$ |
$4.92082$ |
$[0, 1, 0, -16016, -824044]$ |
\(y^2=x^3+x^2-16016x-824044\) |
104.2.0.? |
$[ ]$ |
3952.i1 |
3952g1 |
3952.i |
3952g |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{17} \cdot 13 \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$0.599718433$ |
$1$ |
|
$4$ |
$960$ |
$0.374969$ |
$214921799/150176$ |
$0.86097$ |
$3.32089$ |
$[0, 1, 0, 200, -428]$ |
\(y^2=x^3+x^2+200x-428\) |
104.2.0.? |
$[(6, 32)]$ |
3952.j1 |
3952i2 |
3952.j |
3952i |
$2$ |
$3$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13^{3} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2964$ |
$16$ |
$0$ |
$0.646809925$ |
$1$ |
|
$2$ |
$1296$ |
$0.419284$ |
$-48795070432000/41743$ |
$0.92310$ |
$4.14047$ |
$[0, -1, 0, -1918, 32979]$ |
\(y^2=x^3-x^2-1918x+32979\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 494.2.0.?, 1482.8.0.?, 2964.16.0.? |
$[(21, 39)]$ |
3952.j2 |
3952i1 |
3952.j |
3952i |
$2$ |
$3$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13 \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2964$ |
$16$ |
$0$ |
$1.940429777$ |
$1$ |
|
$2$ |
$432$ |
$-0.130022$ |
$-42592000/89167$ |
$0.79553$ |
$2.64063$ |
$[0, -1, 0, -18, 71]$ |
\(y^2=x^3-x^2-18x+71\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 494.2.0.?, 1482.8.0.?, 2964.16.0.? |
$[(5, 9)]$ |