Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
390402.a1 390402.a \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -6665499, -4563123971]$ \(y^2+xy=x^3-x^2-6665499x-4563123971\) 2.3.0.a.1, 92.6.0.?, 328.6.0.?, 7544.12.0.? $[ ]$
390402.a2 390402.a \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1142541, -479519051]$ \(y^2+xy=x^3-x^2+1142541x-479519051\) 2.3.0.a.1, 46.6.0.a.1, 328.6.0.?, 7544.12.0.? $[ ]$
390402.b1 390402.b \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -24814431, -47571644979]$ \(y^2+xy=x^3-x^2-24814431x-47571644979\) 984.2.0.? $[ ]$
390402.c1 390402.c \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $5.127362739$ $[1, -1, 0, -2090178, -1162535814]$ \(y^2+xy=x^3-x^2-2090178x-1162535814\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 328.24.0.?, 552.24.0.?, $\ldots$ $[(3717, 204084)]$
390402.c2 390402.c \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.563681369$ $[1, -1, 0, -138168, -15925140]$ \(y^2+xy=x^3-x^2-138168x-15925140\) 2.6.0.a.1, 8.12.0.b.1, 164.12.0.?, 276.12.0.?, 328.24.0.?, $\ldots$ $[(543, 8031)]$
390402.c3 390402.c \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $1.281840684$ $[1, -1, 0, -42948, 3214080]$ \(y^2+xy=x^3-x^2-42948x+3214080\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 82.6.0.?, 164.12.0.?, $\ldots$ $[(52, 1032)]$
390402.c4 390402.c \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $5.127362739$ $[1, -1, 0, 290322, -95367186]$ \(y^2+xy=x^3-x^2+290322x-95367186\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 276.12.0.?, 328.24.0.?, $\ldots$ $[(3571, 213782)]$
390402.d1 390402.d \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $13.42181887$ $[1, -1, 0, -4216758, -3330078400]$ \(y^2+xy=x^3-x^2-4216758x-3330078400\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 82.6.0.?, 164.12.0.?, $\ldots$ $[(1880275/11, 2544122120/11)]$
390402.d2 390402.d \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $3.355454718$ $[1, -1, 0, -2502798, 1503174536]$ \(y^2+xy=x^3-x^2-2502798x+1503174536\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 92.12.0.?, 276.24.0.?, $\ldots$ $[(29, 37809)]$
390402.d3 390402.d \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.710909436$ $[1, -1, 0, -312738, -31181500]$ \(y^2+xy=x^3-x^2-312738x-31181500\) 2.6.0.a.1, 12.12.0-2.a.1.1, 92.12.0.?, 164.12.0.?, 276.24.0.?, $\ldots$ $[(15487, 1918252)]$
390402.d4 390402.d \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $13.42181887$ $[1, -1, 0, 68142, -3681964]$ \(y^2+xy=x^3-x^2+68142x-3681964\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 184.12.0.?, 328.12.0.?, $\ldots$ $[(653597/13, 525288765/13)]$
390402.e1 390402.e \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $80.35518316$ $[1, -1, 0, -3101001273, -66447638377659]$ \(y^2+xy=x^3-x^2-3101001273x-66447638377659\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 48.48.0-8.r.1.1, 276.12.0.?, $\ldots$ $[(210482836873018885623774272471980059/909931313784070, 93924573017263912936757153072735608880427138466679883/909931313784070)]$
390402.e2 390402.e \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $10.04439789$ $[1, -1, 0, -1533108753, 23105453587101]$ \(y^2+xy=x^3-x^2-1533108753x+23105453587101\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.h.1, 24.24.0-8.n.1.7, $\ldots$ $[(-124145/6, 1150485089/6)]$
390402.e3 390402.e \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $40.17759158$ $[1, -1, 0, -219834513, -741477949155]$ \(y^2+xy=x^3-x^2-219834513x-741477949155\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.c.1, 24.48.0-8.c.1.2, 184.48.0.?, $\ldots$ $[(24475423916874680715/36142154, 61427204919960752158884169125/36142154)]$
390402.e4 390402.e \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $20.08879579$ $[1, -1, 0, -96429393, 356210593245]$ \(y^2+xy=x^3-x^2-96429393x+356210593245\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.h.1, 24.48.0-8.h.1.2, 184.48.0.?, $\ldots$ $[(-5174519159/2424, 9458736816012977/2424)]$
390402.e5 390402.e \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $40.17759158$ $[1, -1, 0, 1075887, 17886772701]$ \(y^2+xy=x^3-x^2+1075887x+17886772701\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.h.1, 24.24.0-8.n.1.8, $\ldots$ $[(49919620220921497/8139792, 74379287595816347330075611/8139792)]$
390402.e6 390402.e \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $80.35518316$ $[1, -1, 0, 686850327, -5288865095691]$ \(y^2+xy=x^3-x^2+686850327x-5288865095691\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 24.48.0-8.k.1.3, 184.48.0.?, $\ldots$ $[(1728149849409631157719816551429198169/2623643008017720, 2281507178599717532770582671457129492525877985373947913/2623643008017720)]$
390402.f1 390402.f \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2195748, 1249039440]$ \(y^2+xy=x^3-x^2-2195748x+1249039440\) 2.3.0.a.1, 8.6.0.e.1, 92.6.0.?, 184.12.0.? $[ ]$
390402.f2 390402.f \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -76068, 37006416]$ \(y^2+xy=x^3-x^2-76068x+37006416\) 2.3.0.a.1, 8.6.0.e.1, 46.6.0.a.1, 184.12.0.? $[ ]$
390402.g1 390402.g \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $6.752039739$ $[1, -1, 0, -513, -4379]$ \(y^2+xy=x^3-x^2-513x-4379\) 328.2.0.? $[(1745/8, 11803/8)]$
390402.h1 390402.h \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 34815, -1620451]$ \(y^2+xy=x^3-x^2+34815x-1620451\) 984.2.0.? $[ ]$
390402.i1 390402.i \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $6.498927090$ $[1, -1, 0, -11177340, 21614200334]$ \(y^2+xy=x^3-x^2-11177340x+21614200334\) 984.2.0.? $[(336025/16, 390251413/16)]$
390402.j1 390402.j \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -565002, -163323216]$ \(y^2+xy=x^3-x^2-565002x-163323216\) 3.4.0.a.1, 69.8.0-3.a.1.2, 246.8.0.?, 5658.16.0.? $[ ]$
390402.j2 390402.j \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -6102, -280908]$ \(y^2+xy=x^3-x^2-6102x-280908\) 3.4.0.a.1, 69.8.0-3.a.1.1, 246.8.0.?, 5658.16.0.? $[ ]$
390402.k1 390402.k \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $2$ $\Z/2\Z$ $9.728973647$ $[1, -1, 0, -2061612, 1139483862]$ \(y^2+xy=x^3-x^2-2061612x+1139483862\) 2.3.0.a.1, 92.6.0.?, 328.6.0.?, 7544.12.0.? $[(949, 5609), (65461/9, 319330/9)]$
390402.k2 390402.k \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $2$ $\Z/2\Z$ $2.432243411$ $[1, -1, 0, -109602, 23324544]$ \(y^2+xy=x^3-x^2-109602x+23324544\) 2.3.0.a.1, 46.6.0.a.1, 328.6.0.?, 7544.12.0.? $[(6, 4758), (7941, 703038)]$
390402.l1 390402.l \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -298886157, 1988946885825]$ \(y^2+xy=x^3-x^2-298886157x+1988946885825\) 3.8.0-3.a.1.2, 246.16.0.? $[ ]$
390402.l2 390402.l \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3228057, 3437175789]$ \(y^2+xy=x^3-x^2-3228057x+3437175789\) 3.8.0-3.a.1.1, 246.16.0.? $[ ]$
390402.m1 390402.m \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -533008332, 4736541280720]$ \(y^2+xy=x^3-x^2-533008332x+4736541280720\) 2.3.0.a.1, 92.6.0.?, 328.6.0.?, 7544.12.0.? $[ ]$
390402.m2 390402.m \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -33293772, 74104493008]$ \(y^2+xy=x^3-x^2-33293772x+74104493008\) 2.3.0.a.1, 46.6.0.a.1, 328.6.0.?, 7544.12.0.? $[ ]$
390402.n1 390402.n \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1285569, -560875019]$ \(y^2+xy=x^3-x^2-1285569x-560875019\) 984.2.0.? $[ ]$
390402.o1 390402.o \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $6.343785611$ $[1, -1, 0, 547416, -225076928]$ \(y^2+xy=x^3-x^2+547416x-225076928\) 984.2.0.? $[(56297/8, 15443263/8)]$
390402.p1 390402.p \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $151.9883887$ $[1, -1, 0, -2759166234, -55783986042348]$ \(y^2+xy=x^3-x^2-2759166234x-55783986042348\) 5.12.0.a.2, 345.24.0.?, 984.2.0.?, 4920.24.1.?, 37720.24.0.?, $\ldots$ $[(55090225895537762041226564291789015750482452418350779945662585475001/22348667834016934224462122155055, 349133269984288594848181499291578491503187375113950364078730350050170594146589281272960862460350194386/22348667834016934224462122155055)]$
390402.p2 390402.p \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $30.39767775$ $[1, -1, 0, -833274, -9142990668]$ \(y^2+xy=x^3-x^2-833274x-9142990668\) 5.12.0.a.1, 345.24.0.?, 984.2.0.?, 4920.24.1.?, 37720.24.0.?, $\ldots$ $[(1083735177631257/101999, 35619793936937372353074/101999)]$
390402.q1 390402.q \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $4.420495806$ $[1, -1, 0, -271476, 54907960]$ \(y^2+xy=x^3-x^2-271476x+54907960\) 328.2.0.? $[(353, 1547)]$
390402.r1 390402.r \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1161550791, -15190093561923]$ \(y^2+xy=x^3-x^2-1161550791x-15190093561923\) 2.3.0.a.1, 8.6.0.e.1, 92.6.0.?, 184.12.0.? $[ ]$
390402.r2 390402.r \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -40240071, -450015623235]$ \(y^2+xy=x^3-x^2-40240071x-450015623235\) 2.3.0.a.1, 8.6.0.e.1, 46.6.0.a.1, 184.12.0.? $[ ]$
390402.s1 390402.s \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 987808, 602067075]$ \(y^2+xy+y=x^3-x^2+987808x+602067075\) 328.2.0.? $[ ]$
390402.t1 390402.t \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $2$ $\Z/2\Z$ $3.161113251$ $[1, -1, 1, -37381091, 87977614947]$ \(y^2+xy+y=x^3-x^2-37381091x+87977614947\) 2.3.0.a.1, 92.6.0.?, 164.6.0.?, 3772.12.0.? $[(3525, -2292), (2991/2, 1963827/2)]$
390402.t2 390402.t \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $2$ $\Z/2\Z$ $3.161113251$ $[1, -1, 1, -2340131, 1370378211]$ \(y^2+xy+y=x^3-x^2-2340131x+1370378211\) 2.3.0.a.1, 82.6.0.?, 92.6.0.?, 3772.12.0.? $[(351, 24158), (489, 18270)]$
390402.u1 390402.u \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $2$ $\mathsf{trivial}$ $2.064272618$ $[1, -1, 1, 4144, -32575053]$ \(y^2+xy+y=x^3-x^2+4144x-32575053\) 246.2.0.? $[(605, 13521), (1629, 64721)]$
390402.v1 390402.v \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $1.631859902$ $[1, -1, 1, -316706, 68292321]$ \(y^2+xy+y=x^3-x^2-316706x+68292321\) 2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? $[(351, 353)]$
390402.v2 390402.v \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $3.263719804$ $[1, -1, 1, -126266, 149495937]$ \(y^2+xy+y=x^3-x^2-126266x+149495937\) 2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? $[(-477, 10289)]$
390402.w1 390402.w \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\mathsf{trivial}$ $1.186181584$ $[1, -1, 1, -5910881, -14891074383]$ \(y^2+xy+y=x^3-x^2-5910881x-14891074383\) 8.2.0.a.1 $[(4629, 236264)]$
390402.x1 390402.x \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -6252086, 5821664581]$ \(y^2+xy+y=x^3-x^2-6252086x+5821664581\) 2.3.0.a.1, 82.6.0.?, 92.6.0.?, 3772.12.0.? $[ ]$
390402.x2 390402.x \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 2508154, 20840220037]$ \(y^2+xy+y=x^3-x^2+2508154x+20840220037\) 2.3.0.a.1, 46.6.0.a.1, 164.6.0.?, 3772.12.0.? $[ ]$
390402.y1 390402.y \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $19.10201942$ $[1, -1, 1, -2161001336, -38665585017349]$ \(y^2+xy+y=x^3-x^2-2161001336x-38665585017349\) 2.3.0.a.1, 8.6.0.d.1, 82.6.0.?, 328.12.0.? $[(23254903069/37, 3545826431678685/37)]$
390402.y2 390402.y \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $1$ $\Z/2\Z$ $38.20403884$ $[1, -1, 1, -2157954296, -38780061091333]$ \(y^2+xy+y=x^3-x^2-2157954296x-38780061091333\) 2.3.0.a.1, 8.6.0.a.1, 164.6.0.?, 328.12.0.? $[(2943721922037046837/416287, 5049993836075324841105372351/416287)]$
390402.z1 390402.z \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2340131, -1377271065]$ \(y^2+xy+y=x^3-x^2-2340131x-1377271065\) 2.3.0.a.1, 92.6.0.?, 164.6.0.?, 3772.12.0.? $[ ]$
390402.z2 390402.z \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -150071, -20309889]$ \(y^2+xy+y=x^3-x^2-150071x-20309889\) 2.3.0.a.1, 82.6.0.?, 92.6.0.?, 3772.12.0.? $[ ]$
Next   displayed columns for results