Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 67 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
384678.a1 384678.a \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $1.383903369$ $[1, -1, 0, -141531, 20529061]$ \(y^2+xy=x^3-x^2-141531x+20529061\) 7224.2.0.? $[(219, -74)]$
384678.b1 384678.b \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\mathsf{trivial}$ $68.92693050$ $[1, -1, 0, -33465636, -74507154352]$ \(y^2+xy=x^3-x^2-33465636x-74507154352\) 512904.2.0.? $[(-213743/8, 860603/8), (-965137/17, 8207490/17)]$
384678.c1 384678.c \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $24.81866661$ $[1, -1, 0, -26797041, -12711378659]$ \(y^2+xy=x^3-x^2-26797041x-12711378659\) 512904.2.0.? $[(-26415570279/3181, 6434974101304399/3181)]$
384678.d1 384678.d \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -44541, 3413533]$ \(y^2+xy=x^3-x^2-44541x+3413533\) 512904.2.0.? $[ ]$
384678.e1 384678.e \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\mathsf{trivial}$ $6.777386244$ $[1, -1, 0, -1905, -31501]$ \(y^2+xy=x^3-x^2-1905x-31501\) 512904.2.0.? $[(-25, 7), (79, 514)]$
384678.f1 384678.f \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\mathsf{trivial}$ $1.685132075$ $[1, -1, 0, -49950, 4309364]$ \(y^2+xy=x^3-x^2-49950x+4309364\) 512904.2.0.? $[(139, 124), (-205, 2532)]$
384678.g1 384678.g \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $3.146845392$ $[1, -1, 0, -15030, -680076]$ \(y^2+xy=x^3-x^2-15030x-680076\) 7224.2.0.? $[(-81, 9)]$
384678.h1 384678.h \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -5292, -76982]$ \(y^2+xy=x^3-x^2-5292x-76982\) 2.3.0.a.1, 568.6.0.?, 3612.6.0.?, 512904.12.0.? $[ ]$
384678.h2 384678.h \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1098, -9248]$ \(y^2+xy=x^3-x^2+1098x-9248\) 2.3.0.a.1, 568.6.0.?, 1806.6.0.?, 512904.12.0.? $[ ]$
384678.i1 384678.i \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $0.636879975$ $[1, -1, 0, -24837, 1458557]$ \(y^2+xy=x^3-x^2-24837x+1458557\) 2.3.0.a.1, 28.6.0.c.1, 568.6.0.?, 3976.12.0.? $[(109, 139)]$
384678.i2 384678.i \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $1.273759951$ $[1, -1, 0, 723, 83429]$ \(y^2+xy=x^3-x^2+723x+83429\) 2.3.0.a.1, 14.6.0.b.1, 568.6.0.?, 3976.12.0.? $[(-29, 208)]$
384678.j1 384678.j \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $1.587221834$ $[1, -1, 0, -754587, -438489693]$ \(y^2+xy=x^3-x^2-754587x-438489693\) 11928.2.0.? $[(5283, 375516)]$
384678.k1 384678.k \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -287703927, 1878379886173]$ \(y^2+xy=x^3-x^2-287703927x+1878379886173\) 170968.2.0.? $[ ]$
384678.l1 384678.l \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -177597, -28762853]$ \(y^2+xy=x^3-x^2-177597x-28762853\) 2.3.0.a.1, 8.6.0.b.1, 1988.6.0.?, 3976.12.0.? $[ ]$
384678.l2 384678.l \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -11187, -439871]$ \(y^2+xy=x^3-x^2-11187x-439871\) 2.3.0.a.1, 8.6.0.c.1, 994.6.0.?, 3976.12.0.? $[ ]$
384678.m1 384678.m \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $4.774769230$ $[1, -1, 0, -535932, -150778800]$ \(y^2+xy=x^3-x^2-535932x-150778800\) 2.3.0.a.1, 172.6.0.?, 1988.6.0.?, 85484.12.0.? $[(107400, 35142420)]$
384678.m2 384678.m \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $9.549538460$ $[1, -1, 0, -40572, -1279152]$ \(y^2+xy=x^3-x^2-40572x-1279152\) 2.3.0.a.1, 172.6.0.?, 994.6.0.?, 85484.12.0.? $[(63499/17, 2478966/17)]$
384678.n1 384678.n \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $1.687713062$ $[1, -1, 0, -222, -3980]$ \(y^2+xy=x^3-x^2-222x-3980\) 73272.2.0.? $[(29, 101)]$
384678.o1 384678.o \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -871164, -312672528]$ \(y^2+xy=x^3-x^2-871164x-312672528\) 7224.2.0.? $[ ]$
384678.p1 384678.p \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1618191, -4913070611]$ \(y^2+xy=x^3-x^2-1618191x-4913070611\) 170968.2.0.? $[ ]$
384678.q1 384678.q \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $1.643269285$ $[1, -1, 0, -96, 3734]$ \(y^2+xy=x^3-x^2-96x+3734\) 73272.2.0.? $[(13, 61)]$
384678.r1 384678.r \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $3.294292725$ $[1, -1, 0, -16368336, 25493213434]$ \(y^2+xy=x^3-x^2-16368336x+25493213434\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 344.12.0.?, 568.12.0.?, $\ldots$ $[(2843, 42521)]$
384678.r2 384678.r \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.647146362$ $[1, -1, 0, -1025946, 396131872]$ \(y^2+xy=x^3-x^2-1025946x+396131872\) 2.6.0.a.1, 12.12.0-2.a.1.1, 172.12.0.?, 516.24.0.?, 568.12.0.?, $\ldots$ $[(407, 6569)]$
384678.r3 384678.r \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $3.294292725$ $[1, -1, 0, -201636, 1014199510]$ \(y^2+xy=x^3-x^2-201636x+1014199510\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 172.12.0.?, 568.12.0.?, $\ldots$ $[(1685, 73025)]$
384678.r4 384678.r \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $3.294292725$ $[1, -1, 0, -118566, -5837468]$ \(y^2+xy=x^3-x^2-118566x-5837468\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 172.12.0.?, 258.6.0.?, $\ldots$ $[(-91, 2093)]$
384678.s1 384678.s \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -12576726, -18258210486]$ \(y^2+xy=x^3-x^2-12576726x-18258210486\) 73272.2.0.? $[ ]$
384678.t1 384678.t \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\mathsf{trivial}$ $4.892173627$ $[1, -1, 0, -13356, -21527856]$ \(y^2+xy=x^3-x^2-13356x-21527856\) 11928.2.0.? $[(945, 27972), (343, 3591)]$
384678.u1 384678.u \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $2.060508253$ $[1, -1, 0, 189, 2835]$ \(y^2+xy=x^3-x^2+189x+2835\) 11928.2.0.? $[(3, 57)]$
384678.v1 384678.v \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $17.28758248$ $[1, -1, 0, -28014336, -57062154240]$ \(y^2+xy=x^3-x^2-28014336x-57062154240\) 2.3.0.a.1, 516.6.0.?, 568.6.0.?, 73272.12.0.? $[(585772239/125, 13990771814487/125)]$
384678.v2 384678.v \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $8.643791242$ $[1, -1, 0, -1840896, -794492928]$ \(y^2+xy=x^3-x^2-1840896x-794492928\) 2.3.0.a.1, 258.6.0.?, 568.6.0.?, 73272.12.0.? $[(-89259/13, 12664371/13)]$
384678.w1 384678.w \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4443, -81883]$ \(y^2+xy=x^3-x^2-4443x-81883\) 512904.2.0.? $[ ]$
384678.x1 384678.x \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/3\Z$ $20.63787048$ $[1, -1, 0, -68343947343, 6877004040813123]$ \(y^2+xy=x^3-x^2-68343947343x+6877004040813123\) 3.8.0-3.a.1.2, 9.72.0-9.d.2.1, 512904.16.0.?, 1538712.144.3.? $[(202772993211/1159, -99380416131720/1159)]$
384678.x2 384678.x \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/3\Z$ $6.879290160$ $[1, -1, 0, -873512073, 8732490816357]$ \(y^2+xy=x^3-x^2-873512073x+8732490816357\) 3.24.0-3.a.1.1, 9.72.0-9.a.1.2, 512904.48.1.?, 1538712.144.3.? $[(22617, 727020)]$
384678.x3 384678.x \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $2.293096720$ $[1, -1, 0, -216721953, -1226379099267]$ \(y^2+xy=x^3-x^2-216721953x-1226379099267\) 3.8.0-3.a.1.1, 9.72.0-9.d.1.1, 512904.16.0.?, 1538712.144.3.? $[(18081, 866124)]$
384678.y1 384678.y \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2205450, -9021068172]$ \(y^2+xy=x^3-x^2+2205450x-9021068172\) 11928.2.0.? $[ ]$
384678.z1 384678.z \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $0.437271865$ $[1, -1, 1, -1744727, 887468015]$ \(y^2+xy+y=x^3-x^2-1744727x+887468015\) 2.3.0.a.1, 568.6.0.?, 3612.6.0.?, 512904.12.0.? $[(747, 382)]$
384678.z2 384678.z \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $0.874543730$ $[1, -1, 1, -108887, 13929455]$ \(y^2+xy+y=x^3-x^2-108887x+13929455\) 2.3.0.a.1, 568.6.0.?, 1806.6.0.?, 512904.12.0.? $[(187, 190)]$
384678.ba1 384678.ba \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $5.535855701$ $[1, -1, 1, -225724990199, 41277954820117839]$ \(y^2+xy+y=x^3-x^2-225724990199x+41277954820117839\) 7224.2.0.? $[(274283, -120114)]$
384678.bb1 384678.bb \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $1.509164268$ $[1, -1, 1, -2838119, -1555126113]$ \(y^2+xy+y=x^3-x^2-2838119x-1555126113\) 7224.2.0.? $[(-769, 13506)]$
384678.bc1 384678.bc \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\mathsf{trivial}$ $0.369472403$ $[1, -1, 1, -494, 3197]$ \(y^2+xy+y=x^3-x^2-494x+3197\) 512904.2.0.? $[(21, 31), (7, 3)]$
384678.bd1 384678.bd \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\Z/2\Z$ $3.223605152$ $[1, -1, 1, -257576, -50136469]$ \(y^2+xy+y=x^3-x^2-257576x-50136469\) 2.3.0.a.1, 28.6.0.c.1, 344.6.0.?, 2408.12.0.? $[(-299, 433), (19039/2, 2592195/2)]$
384678.bd2 384678.bd \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $2$ $\Z/2\Z$ $3.223605152$ $[1, -1, 1, -9896, -1393045]$ \(y^2+xy+y=x^3-x^2-9896x-1393045\) 2.3.0.a.1, 14.6.0.b.1, 344.6.0.?, 2408.12.0.? $[(205, 2169), (4749, 324793)]$
384678.be1 384678.be \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -3596126, -2627675283]$ \(y^2+xy+y=x^3-x^2-3596126x-2627675283\) 11928.2.0.? $[ ]$
384678.bf1 384678.bf \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -236, 1477]$ \(y^2+xy+y=x^3-x^2-236x+1477\) 170968.2.0.? $[ ]$
384678.bg1 384678.bg \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $3.814225855$ $[1, -1, 1, -3476, 67681]$ \(y^2+xy+y=x^3-x^2-3476x+67681\) 2.3.0.a.1, 284.6.0.?, 344.6.0.?, 24424.12.0.? $[(287/2, 3139/2)]$
384678.bg2 384678.bg \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\Z/2\Z$ $1.907112927$ $[1, -1, 1, 394, 5761]$ \(y^2+xy+y=x^3-x^2+394x+5761\) 2.3.0.a.1, 142.6.0.?, 344.6.0.?, 24424.12.0.? $[(61, 473)]$
384678.bh1 384678.bh \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $1$ $\mathsf{trivial}$ $3.729676649$ $[1, -1, 1, -11, -135]$ \(y^2+xy+y=x^3-x^2-11x-135\) 73272.2.0.? $[(59/2, 357/2)]$
384678.bi1 384678.bi \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -88085, -10044179]$ \(y^2+xy+y=x^3-x^2-88085x-10044179\) 1988.2.0.? $[ ]$
384678.bj1 384678.bj \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -76190, 5255489]$ \(y^2+xy+y=x^3-x^2-76190x+5255489\) 2.3.0.a.1, 172.6.0.?, 1988.6.0.?, 85484.12.0.? $[ ]$
384678.bj2 384678.bj \( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -68450, 6908753]$ \(y^2+xy+y=x^3-x^2-68450x+6908753\) 2.3.0.a.1, 172.6.0.?, 994.6.0.?, 85484.12.0.? $[ ]$
Next   displayed columns for results