| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 384678.a1 |
384678a1 |
384678.a |
384678a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{17} \cdot 3^{3} \cdot 7 \cdot 43 \cdot 71^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7224$ |
$2$ |
$0$ |
$1.383903369$ |
$1$ |
|
$4$ |
$2319616$ |
$1.572016$ |
$11612250602251043499/198880919552$ |
$0.91245$ |
$3.66982$ |
$[1, -1, 0, -141531, 20529061]$ |
\(y^2+xy=x^3-x^2-141531x+20529061\) |
7224.2.0.? |
$[(219, -74)]$ |
$1$ |
| 384678.b1 |
384678b1 |
384678.b |
384678b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{23} \cdot 3^{3} \cdot 7 \cdot 43^{3} \cdot 71 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$68.92693050$ |
$1$ |
|
$0$ |
$16109568$ |
$2.735027$ |
$153517257815175711566085339/331475668959232$ |
$1.07357$ |
$4.94486$ |
$[1, -1, 0, -33465636, -74507154352]$ |
\(y^2+xy=x^3-x^2-33465636x-74507154352\) |
512904.2.0.? |
$[(-213743/8, 860603/8), (-965137/17, 8207490/17)]$ |
$1$ |
| 384678.c1 |
384678c1 |
384678.c |
384678c |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{33} \cdot 3^{17} \cdot 7^{3} \cdot 43 \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$24.81866661$ |
$1$ |
|
$0$ |
$55756800$ |
$3.308453$ |
$2919152039461415934671377/1593472537822595383296$ |
$0.98362$ |
$4.89302$ |
$[1, -1, 0, -26797041, -12711378659]$ |
\(y^2+xy=x^3-x^2-26797041x-12711378659\) |
512904.2.0.? |
$[(-26415570279/3181, 6434974101304399/3181)]$ |
$1$ |
| 384678.d1 |
384678d1 |
384678.d |
384678d |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{3} \cdot 3^{13} \cdot 7^{5} \cdot 43 \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1989120$ |
$1.591953$ |
$13405454970311377/897750745416$ |
$0.87077$ |
$3.40012$ |
$[1, -1, 0, -44541, 3413533]$ |
\(y^2+xy=x^3-x^2-44541x+3413533\) |
512904.2.0.? |
$[ ]$ |
$1$ |
| 384678.e1 |
384678e1 |
384678.e |
384678e |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2 \cdot 3^{9} \cdot 7 \cdot 43 \cdot 71 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$6.777386244$ |
$1$ |
|
$4$ |
$290304$ |
$0.627477$ |
$38854881603/42742$ |
$0.77709$ |
$2.66487$ |
$[1, -1, 0, -1905, -31501]$ |
\(y^2+xy=x^3-x^2-1905x-31501\) |
512904.2.0.? |
$[(-25, 7), (79, 514)]$ |
$1$ |
| 384678.f1 |
384678f1 |
384678.f |
384678f |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{5} \cdot 3^{3} \cdot 7 \cdot 43^{3} \cdot 71 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$1.685132075$ |
$1$ |
|
$6$ |
$1121280$ |
$1.260307$ |
$510471283995338427/1264479328$ |
$0.91867$ |
$3.42686$ |
$[1, -1, 0, -49950, 4309364]$ |
\(y^2+xy=x^3-x^2-49950x+4309364\) |
512904.2.0.? |
$[(139, 124), (-205, 2532)]$ |
$1$ |
| 384678.g1 |
384678g1 |
384678.g |
384678g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{9} \cdot 3^{9} \cdot 7 \cdot 43 \cdot 71^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7224$ |
$2$ |
$0$ |
$3.146845392$ |
$1$ |
|
$2$ |
$1257984$ |
$1.295649$ |
$515097425213281/20975721984$ |
$0.84785$ |
$3.14670$ |
$[1, -1, 0, -15030, -680076]$ |
\(y^2+xy=x^3-x^2-15030x-680076\) |
7224.2.0.? |
$[(-81, 9)]$ |
$1$ |
| 384678.h1 |
384678h2 |
384678.h |
384678h |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2 \cdot 3^{12} \cdot 7^{2} \cdot 43^{2} \cdot 71 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$512904$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$970752$ |
$1.159897$ |
$22485463890625/9378834318$ |
$0.87504$ |
$2.90320$ |
$[1, -1, 0, -5292, -76982]$ |
\(y^2+xy=x^3-x^2-5292x-76982\) |
2.3.0.a.1, 568.6.0.?, 3612.6.0.?, 512904.12.0.? |
$[ ]$ |
$1$ |
| 384678.h2 |
384678h1 |
384678.h |
384678h |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{2} \cdot 3^{9} \cdot 7 \cdot 43 \cdot 71^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$512904$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$485376$ |
$0.813324$ |
$200715401375/163872828$ |
$0.79896$ |
$2.53627$ |
$[1, -1, 0, 1098, -9248]$ |
\(y^2+xy=x^3-x^2+1098x-9248\) |
2.3.0.a.1, 568.6.0.?, 1806.6.0.?, 512904.12.0.? |
$[ ]$ |
$1$ |
| 384678.i1 |
384678i2 |
384678.i |
384678i |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{3} \cdot 3^{6} \cdot 7^{2} \cdot 43^{4} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3976$ |
$12$ |
$0$ |
$0.636879975$ |
$1$ |
|
$8$ |
$1744896$ |
$1.421474$ |
$2324360205644625/95152069432$ |
$0.89835$ |
$3.26387$ |
$[1, -1, 0, -24837, 1458557]$ |
\(y^2+xy=x^3-x^2-24837x+1458557\) |
2.3.0.a.1, 28.6.0.c.1, 568.6.0.?, 3976.12.0.? |
$[(109, 139)]$ |
$1$ |
| 384678.i2 |
384678i1 |
384678.i |
384678i |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{6} \cdot 3^{6} \cdot 7 \cdot 43^{2} \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3976$ |
$12$ |
$0$ |
$1.273759951$ |
$1$ |
|
$7$ |
$872448$ |
$1.074902$ |
$57289251375/4175722432$ |
$0.89723$ |
$2.81419$ |
$[1, -1, 0, 723, 83429]$ |
\(y^2+xy=x^3-x^2+723x+83429\) |
2.3.0.a.1, 14.6.0.b.1, 568.6.0.?, 3976.12.0.? |
$[(-29, 208)]$ |
$1$ |
| 384678.j1 |
384678j1 |
384678.j |
384678j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{7} \cdot 7^{13} \cdot 43^{2} \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$11928$ |
$2$ |
$0$ |
$1.587221834$ |
$1$ |
|
$2$ |
$11860992$ |
$2.482819$ |
$-65181517077888744625/76316954383323318$ |
$0.92839$ |
$4.14627$ |
$[1, -1, 0, -754587, -438489693]$ |
\(y^2+xy=x^3-x^2-754587x-438489693\) |
11928.2.0.? |
$[(5283, 375516)]$ |
$1$ |
| 384678.k1 |
384678k1 |
384678.k |
384678k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{37} \cdot 3^{6} \cdot 7 \cdot 43 \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$170968$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53706240$ |
$3.255020$ |
$-3612713767281826521105408625/2937207874650112$ |
$0.98165$ |
$5.44674$ |
$[1, -1, 0, -287703927, 1878379886173]$ |
\(y^2+xy=x^3-x^2-287703927x+1878379886173\) |
170968.2.0.? |
$[ ]$ |
$1$ |
| 384678.l1 |
384678l2 |
384678.l |
384678l |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2 \cdot 3^{6} \cdot 7^{2} \cdot 43^{2} \cdot 71^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$3976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1351680$ |
$1.556797$ |
$849775949234556625/913439282$ |
$0.89427$ |
$3.72277$ |
$[1, -1, 0, -177597, -28762853]$ |
\(y^2+xy=x^3-x^2-177597x-28762853\) |
2.3.0.a.1, 8.6.0.b.1, 1988.6.0.?, 3976.12.0.? |
$[ ]$ |
$1$ |
| 384678.l2 |
384678l1 |
384678.l |
384678l |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{2} \cdot 3^{6} \cdot 7 \cdot 43^{4} \cdot 71 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$3976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$675840$ |
$1.210224$ |
$212402162904625/6796576388$ |
$0.84105$ |
$3.07781$ |
$[1, -1, 0, -11187, -439871]$ |
\(y^2+xy=x^3-x^2-11187x-439871\) |
2.3.0.a.1, 8.6.0.c.1, 994.6.0.?, 3976.12.0.? |
$[ ]$ |
$1$ |
| 384678.m1 |
384678m2 |
384678.m |
384678m |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{8} \cdot 3^{14} \cdot 7^{2} \cdot 43 \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$85484$ |
$12$ |
$0$ |
$4.774769230$ |
$1$ |
|
$2$ |
$3538944$ |
$2.024231$ |
$23352087379684722625/17839851547392$ |
$0.91154$ |
$3.98042$ |
$[1, -1, 0, -535932, -150778800]$ |
\(y^2+xy=x^3-x^2-535932x-150778800\) |
2.3.0.a.1, 172.6.0.?, 1988.6.0.?, 85484.12.0.? |
$[(107400, 35142420)]$ |
$1$ |
| 384678.m2 |
384678m1 |
384678.m |
384678m |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{16} \cdot 3^{10} \cdot 7 \cdot 43^{2} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$85484$ |
$12$ |
$0$ |
$9.549538460$ |
$1$ |
|
$1$ |
$1769472$ |
$1.677656$ |
$10131679786866625/4878184808448$ |
$0.88631$ |
$3.37835$ |
$[1, -1, 0, -40572, -1279152]$ |
\(y^2+xy=x^3-x^2-40572x-1279152\) |
2.3.0.a.1, 172.6.0.?, 994.6.0.?, 85484.12.0.? |
$[(63499/17, 2478966/17)]$ |
$1$ |
| 384678.n1 |
384678n1 |
384678.n |
384678n |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{5} \cdot 3^{3} \cdot 7^{4} \cdot 43 \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$73272$ |
$2$ |
$0$ |
$1.687713062$ |
$1$ |
|
$2$ |
$202240$ |
$0.564991$ |
$-44928178875/234568096$ |
$0.79763$ |
$2.34281$ |
$[1, -1, 0, -222, -3980]$ |
\(y^2+xy=x^3-x^2-222x-3980\) |
73272.2.0.? |
$[(29, 101)]$ |
$1$ |
| 384678.o1 |
384678o1 |
384678.o |
384678o |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{5} \cdot 3^{11} \cdot 7^{5} \cdot 43 \cdot 71^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7224$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5952000$ |
$2.111572$ |
$100298912737966907329/28329023522016$ |
$0.91852$ |
$4.09376$ |
$[1, -1, 0, -871164, -312672528]$ |
\(y^2+xy=x^3-x^2-871164x-312672528\) |
7224.2.0.? |
$[ ]$ |
$1$ |
| 384678.p1 |
384678p1 |
384678.p |
384678p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{13} \cdot 3^{22} \cdot 7 \cdot 43^{3} \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$170968$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$23642112$ |
$2.903542$ |
$-642814521263270996977/13934512343726972928$ |
$0.96354$ |
$4.52200$ |
$[1, -1, 0, -1618191, -4913070611]$ |
\(y^2+xy=x^3-x^2-1618191x-4913070611\) |
170968.2.0.? |
$[ ]$ |
$1$ |
| 384678.q1 |
384678q1 |
384678.q |
384678q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{9} \cdot 7^{2} \cdot 43 \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$73272$ |
$2$ |
$0$ |
$1.643269285$ |
$1$ |
|
$2$ |
$289536$ |
$0.554530$ |
$-5000211/299194$ |
$0.72646$ |
$2.32973$ |
$[1, -1, 0, -96, 3734]$ |
\(y^2+xy=x^3-x^2-96x+3734\) |
73272.2.0.? |
$[(13, 61)]$ |
$1$ |
| 384678.r1 |
384678r3 |
384678.r |
384678r |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2 \cdot 3^{10} \cdot 7^{4} \cdot 43^{4} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$73272$ |
$48$ |
$0$ |
$3.294292725$ |
$1$ |
|
$2$ |
$12746752$ |
$2.640926$ |
$665288157714574603136257/94414640893902$ |
$0.95443$ |
$4.77803$ |
$[1, -1, 0, -16368336, 25493213434]$ |
\(y^2+xy=x^3-x^2-16368336x+25493213434\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 344.12.0.?, 568.12.0.?, $\ldots$ |
$[(2843, 42521)]$ |
$1$ |
| 384678.r2 |
384678r2 |
384678.r |
384678r |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{2} \cdot 3^{8} \cdot 7^{8} \cdot 43^{2} \cdot 71^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$73272$ |
$48$ |
$0$ |
$1.647146362$ |
$1$ |
|
$8$ |
$6373376$ |
$2.294353$ |
$163821134663121864097/1934373925584324$ |
$0.97022$ |
$4.13191$ |
$[1, -1, 0, -1025946, 396131872]$ |
\(y^2+xy=x^3-x^2-1025946x+396131872\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 172.12.0.?, 516.24.0.?, 568.12.0.?, $\ldots$ |
$[(407, 6569)]$ |
$1$ |
| 384678.r3 |
384678r4 |
384678.r |
384678r |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{7} \cdot 7^{16} \cdot 43 \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$73272$ |
$48$ |
$0$ |
$3.294292725$ |
$1$ |
|
$2$ |
$12746752$ |
$2.640926$ |
$-1243659855033723457/608760822173951118$ |
$0.97098$ |
$4.27660$ |
$[1, -1, 0, -201636, 1014199510]$ |
\(y^2+xy=x^3-x^2-201636x+1014199510\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 172.12.0.?, 568.12.0.?, $\ldots$ |
$[(1685, 73025)]$ |
$1$ |
| 384678.r4 |
384678r1 |
384678.r |
384678r |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{4} \cdot 3^{7} \cdot 7^{4} \cdot 43 \cdot 71^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$73272$ |
$48$ |
$0$ |
$3.294292725$ |
$1$ |
|
$3$ |
$3186688$ |
$1.947781$ |
$252859194318650977/125931752711184$ |
$0.90723$ |
$3.62851$ |
$[1, -1, 0, -118566, -5837468]$ |
\(y^2+xy=x^3-x^2-118566x-5837468\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 172.12.0.?, 258.6.0.?, $\ldots$ |
$[(-91, 2093)]$ |
$1$ |
| 384678.s1 |
384678s1 |
384678.s |
384678s |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{7} \cdot 7^{14} \cdot 43^{3} \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$73272$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27267072$ |
$3.012459$ |
$-301785939226916948363617/22971403269380318718$ |
$0.95272$ |
$4.72617$ |
$[1, -1, 0, -12576726, -18258210486]$ |
\(y^2+xy=x^3-x^2-12576726x-18258210486\) |
73272.2.0.? |
$[ ]$ |
$1$ |
| 384678.t1 |
384678t1 |
384678.t |
384678t |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{9} \cdot 3^{11} \cdot 7^{5} \cdot 43^{2} \cdot 71 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$11928$ |
$2$ |
$0$ |
$4.892173627$ |
$1$ |
|
$6$ |
$5760000$ |
$1.998854$ |
$-361446235206337/274512227931648$ |
$0.94029$ |
$3.67749$ |
$[1, -1, 0, -13356, -21527856]$ |
\(y^2+xy=x^3-x^2-13356x-21527856\) |
11928.2.0.? |
$[(945, 27972), (343, 3591)]$ |
$1$ |
| 384678.u1 |
384678u1 |
384678.u |
384678u |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{7} \cdot 7 \cdot 43^{2} \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$11928$ |
$2$ |
$0$ |
$2.060508253$ |
$1$ |
|
$2$ |
$205824$ |
$0.524958$ |
$1021147343/5513718$ |
$0.76316$ |
$2.29047$ |
$[1, -1, 0, 189, 2835]$ |
\(y^2+xy=x^3-x^2+189x+2835\) |
11928.2.0.? |
$[(3, 57)]$ |
$1$ |
| 384678.v1 |
384678v2 |
384678.v |
384678v |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{13} \cdot 3^{16} \cdot 7^{4} \cdot 43^{2} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$73272$ |
$12$ |
$0$ |
$17.28758248$ |
$1$ |
|
$0$ |
$27156480$ |
$2.922234$ |
$3335317576841036098400257/152471934599749632$ |
$0.96004$ |
$4.90338$ |
$[1, -1, 0, -28014336, -57062154240]$ |
\(y^2+xy=x^3-x^2-28014336x-57062154240\) |
2.3.0.a.1, 516.6.0.?, 568.6.0.?, 73272.12.0.? |
$[(585772239/125, 13990771814487/125)]$ |
$1$ |
| 384678.v2 |
384678v1 |
384678.v |
384678v |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{26} \cdot 3^{11} \cdot 7^{2} \cdot 43 \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$73272$ |
$12$ |
$0$ |
$8.643791242$ |
$1$ |
|
$1$ |
$13578240$ |
$2.575661$ |
$946420369077135568897/173207779408871424$ |
$0.93204$ |
$4.26829$ |
$[1, -1, 0, -1840896, -794492928]$ |
\(y^2+xy=x^3-x^2-1840896x-794492928\) |
2.3.0.a.1, 258.6.0.?, 568.6.0.?, 73272.12.0.? |
$[(-89259/13, 12664371/13)]$ |
$1$ |
| 384678.w1 |
384678w1 |
384678.w |
384678w |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{7} \cdot 3^{9} \cdot 7^{3} \cdot 43 \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1128960$ |
$1.091290$ |
$492851793699/134038912$ |
$0.78666$ |
$2.86240$ |
$[1, -1, 0, -4443, -81883]$ |
\(y^2+xy=x^3-x^2-4443x-81883\) |
512904.2.0.? |
$[ ]$ |
$1$ |
| 384678.x1 |
384678x3 |
384678.x |
384678x |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2 \cdot 3^{7} \cdot 7 \cdot 43^{3} \cdot 71^{9} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.6 |
3B.1.1 |
$1538712$ |
$144$ |
$3$ |
$20.63787048$ |
$1$ |
|
$2$ |
$1209323520$ |
$4.647621$ |
$48427980631254958469835824847167473/153101623358112538524114$ |
$1.01978$ |
$6.72286$ |
$[1, -1, 0, -68343947343, 6877004040813123]$ |
\(y^2+xy=x^3-x^2-68343947343x+6877004040813123\) |
3.8.0-3.a.1.2, 9.72.0-9.d.2.1, 512904.16.0.?, 1538712.144.3.? |
$[(202772993211/1159, -99380416131720/1159)]$ |
$1$ |
| 384678.x2 |
384678x2 |
384678.x |
384678x |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{3} \cdot 3^{9} \cdot 7^{3} \cdot 43^{9} \cdot 71^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.2 |
3Cs.1.1 |
$1538712$ |
$144$ |
$3$ |
$6.879290160$ |
$1$ |
|
$4$ |
$403107840$ |
$4.098312$ |
$101112050932948721991382242193/13327203141829750320519624$ |
$0.99255$ |
$5.70581$ |
$[1, -1, 0, -873512073, 8732490816357]$ |
\(y^2+xy=x^3-x^2-873512073x+8732490816357\) |
3.24.0-3.a.1.1, 9.72.0-9.a.1.2, 512904.48.1.?, 1538712.144.3.? |
$[(22617, 727020)]$ |
$1$ |
| 384678.x3 |
384678x1 |
384678.x |
384678x |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{9} \cdot 3^{15} \cdot 7^{9} \cdot 43^{3} \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.11 |
3B.1.2 |
$1538712$ |
$144$ |
$3$ |
$2.293096720$ |
$1$ |
|
$4$ |
$134369280$ |
$3.549011$ |
$1544204814149745316374461713/2295658741816117891584$ |
$0.97926$ |
$5.38065$ |
$[1, -1, 0, -216721953, -1226379099267]$ |
\(y^2+xy=x^3-x^2-216721953x-1226379099267\) |
3.8.0-3.a.1.1, 9.72.0-9.d.1.1, 512904.16.0.?, 1538712.144.3.? |
$[(18081, 866124)]$ |
$1$ |
| 384678.y1 |
384678y1 |
384678.y |
384678y |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{25} \cdot 3^{19} \cdot 7 \cdot 43^{2} \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$11928$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$48921600$ |
$3.007809$ |
$1627375306884498007199/49160863531357175808$ |
$0.96998$ |
$4.61648$ |
$[1, -1, 0, 2205450, -9021068172]$ |
\(y^2+xy=x^3-x^2+2205450x-9021068172\) |
11928.2.0.? |
$[ ]$ |
$1$ |
| 384678.z1 |
384678z2 |
384678.z |
384678z |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{9} \cdot 3^{8} \cdot 7^{2} \cdot 43^{2} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$512904$ |
$12$ |
$0$ |
$0.437271865$ |
$1$ |
|
$10$ |
$8736768$ |
$2.052326$ |
$805709336401039244329/29641747968$ |
$0.95765$ |
$4.25577$ |
$[1, -1, 1, -1744727, 887468015]$ |
\(y^2+xy+y=x^3-x^2-1744727x+887468015\) |
2.3.0.a.1, 568.6.0.?, 3612.6.0.?, 512904.12.0.? |
$[(747, 382)]$ |
$1$ |
| 384678.z2 |
384678z1 |
384678.z |
384678z |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{18} \cdot 3^{7} \cdot 7 \cdot 43 \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$512904$ |
$12$ |
$0$ |
$0.874543730$ |
$1$ |
|
$9$ |
$4368384$ |
$1.705751$ |
$-195848631894760489/1193285517312$ |
$0.91899$ |
$3.60946$ |
$[1, -1, 1, -108887, 13929455]$ |
\(y^2+xy+y=x^3-x^2-108887x+13929455\) |
2.3.0.a.1, 568.6.0.?, 1806.6.0.?, 512904.12.0.? |
$[(187, 190)]$ |
$1$ |
| 384678.ba1 |
384678ba1 |
384678.ba |
384678ba |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{7} \cdot 3^{7} \cdot 7^{19} \cdot 43 \cdot 71^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7224$ |
$2$ |
$0$ |
$5.535855701$ |
$1$ |
|
$2$ |
$1867805184$ |
$4.914131$ |
$1744757654531089303595101198341756457/948809747353742820905856$ |
$1.02640$ |
$7.00157$ |
$[1, -1, 1, -225724990199, 41277954820117839]$ |
\(y^2+xy+y=x^3-x^2-225724990199x+41277954820117839\) |
7224.2.0.? |
$[(274283, -120114)]$ |
$1$ |
| 384678.bb1 |
384678bb1 |
384678.bb |
384678bb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{7} \cdot 3^{19} \cdot 7 \cdot 43^{3} \cdot 71^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7224$ |
$2$ |
$0$ |
$1.509164268$ |
$1$ |
|
$4$ |
$17192448$ |
$2.678204$ |
$3468069911694643748137/572540727086004096$ |
$0.93713$ |
$4.36927$ |
$[1, -1, 1, -2838119, -1555126113]$ |
\(y^2+xy+y=x^3-x^2-2838119x-1555126113\) |
7224.2.0.? |
$[(-769, 13506)]$ |
$1$ |
| 384678.bc1 |
384678bc1 |
384678.bc |
384678bc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{7} \cdot 3^{3} \cdot 7^{3} \cdot 43 \cdot 71 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$512904$ |
$2$ |
$0$ |
$0.369472403$ |
$1$ |
|
$18$ |
$376320$ |
$0.541984$ |
$492851793699/134038912$ |
$0.78666$ |
$2.34984$ |
$[1, -1, 1, -494, 3197]$ |
\(y^2+xy+y=x^3-x^2-494x+3197\) |
512904.2.0.? |
$[(21, 31), (7, 3)]$ |
$1$ |
| 384678.bd1 |
384678bd2 |
384678.bd |
384678bd |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{7} \cdot 3^{6} \cdot 7^{2} \cdot 43 \cdot 71^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2408$ |
$12$ |
$0$ |
$3.223605152$ |
$1$ |
|
$12$ |
$2752512$ |
$1.887133$ |
$2592452374932426553/6853428718976$ |
$0.90035$ |
$3.80950$ |
$[1, -1, 1, -257576, -50136469]$ |
\(y^2+xy+y=x^3-x^2-257576x-50136469\) |
2.3.0.a.1, 28.6.0.c.1, 344.6.0.?, 2408.12.0.? |
$[(-299, 433), (19039/2, 2592195/2)]$ |
$1$ |
| 384678.bd2 |
384678bd1 |
384678.bd |
384678bd |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{14} \cdot 3^{6} \cdot 7 \cdot 43^{2} \cdot 71^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2408$ |
$12$ |
$0$ |
$3.223605152$ |
$1$ |
|
$15$ |
$1376256$ |
$1.540560$ |
$-147005674821433/1068984942592$ |
$0.87526$ |
$3.25196$ |
$[1, -1, 1, -9896, -1393045]$ |
\(y^2+xy+y=x^3-x^2-9896x-1393045\) |
2.3.0.a.1, 14.6.0.b.1, 344.6.0.?, 2408.12.0.? |
$[(205, 2169), (4749, 324793)]$ |
$1$ |
| 384678.be1 |
384678be1 |
384678.be |
384678be |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{7} \cdot 3^{15} \cdot 7 \cdot 43^{2} \cdot 71^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$11928$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13547520$ |
$2.528419$ |
$-7055060959088908825753/11671085737325952$ |
$0.93713$ |
$4.42472$ |
$[1, -1, 1, -3596126, -2627675283]$ |
\(y^2+xy+y=x^3-x^2-3596126x-2627675283\) |
11928.2.0.? |
$[ ]$ |
$1$ |
| 384678.bf1 |
384678bf1 |
384678.bf |
384678bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{6} \cdot 7 \cdot 43 \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$170968$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$131072$ |
$0.227737$ |
$-1986121593/42742$ |
$0.84368$ |
$2.18019$ |
$[1, -1, 1, -236, 1477]$ |
\(y^2+xy+y=x^3-x^2-236x+1477\) |
170968.2.0.? |
$[ ]$ |
$1$ |
| 384678.bg1 |
384678bg2 |
384678.bg |
384678bg |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2 \cdot 3^{6} \cdot 7^{4} \cdot 43 \cdot 71^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$24424$ |
$12$ |
$0$ |
$3.814225855$ |
$1$ |
|
$0$ |
$622592$ |
$1.001369$ |
$6369690780153/1040895926$ |
$0.85378$ |
$2.80512$ |
$[1, -1, 1, -3476, 67681]$ |
\(y^2+xy+y=x^3-x^2-3476x+67681\) |
2.3.0.a.1, 284.6.0.?, 344.6.0.?, 24424.12.0.? |
$[(287/2, 3139/2)]$ |
$1$ |
| 384678.bg2 |
384678bg1 |
384678.bg |
384678bg |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{2} \cdot 3^{6} \cdot 7^{2} \cdot 43^{2} \cdot 71 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$24424$ |
$12$ |
$0$ |
$1.907112927$ |
$1$ |
|
$3$ |
$311296$ |
$0.654795$ |
$9300746727/25730684$ |
$0.81432$ |
$2.40082$ |
$[1, -1, 1, 394, 5761]$ |
\(y^2+xy+y=x^3-x^2+394x+5761\) |
2.3.0.a.1, 142.6.0.?, 344.6.0.?, 24424.12.0.? |
$[(61, 473)]$ |
$1$ |
| 384678.bh1 |
384678bh1 |
384678.bh |
384678bh |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2 \cdot 3^{3} \cdot 7^{2} \cdot 43 \cdot 71 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$73272$ |
$2$ |
$0$ |
$3.729676649$ |
$1$ |
|
$0$ |
$96512$ |
$0.005224$ |
$-5000211/299194$ |
$0.72646$ |
$1.81716$ |
$[1, -1, 1, -11, -135]$ |
\(y^2+xy+y=x^3-x^2-11x-135\) |
73272.2.0.? |
$[(59/2, 357/2)]$ |
$1$ |
| 384678.bi1 |
384678bi1 |
384678.bi |
384678bi |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( - 2^{10} \cdot 3^{6} \cdot 7^{3} \cdot 43^{2} \cdot 71 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1988$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1505280$ |
$1.553997$ |
$-103680584667311625/46109385728$ |
$0.89673$ |
$3.55925$ |
$[1, -1, 1, -88085, -10044179]$ |
\(y^2+xy+y=x^3-x^2-88085x-10044179\) |
1988.2.0.? |
$[ ]$ |
$1$ |
| 384678.bj1 |
384678bj2 |
384678.bj |
384678bj |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{2} \cdot 3^{18} \cdot 7^{2} \cdot 43 \cdot 71^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$85484$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3194880$ |
$1.814043$ |
$67094166273513625/22578562114668$ |
$0.88837$ |
$3.52535$ |
$[1, -1, 1, -76190, 5255489]$ |
\(y^2+xy+y=x^3-x^2-76190x+5255489\) |
2.3.0.a.1, 172.6.0.?, 1988.6.0.?, 85484.12.0.? |
$[ ]$ |
$1$ |
| 384678.bj2 |
384678bj1 |
384678.bj |
384678bj |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71 \) |
\( 2^{4} \cdot 3^{12} \cdot 7 \cdot 43^{2} \cdot 71 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$85484$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1597440$ |
$1.467468$ |
$48653108501649625/10718667792$ |
$0.96858$ |
$3.50036$ |
$[1, -1, 1, -68450, 6908753]$ |
\(y^2+xy+y=x^3-x^2-68450x+6908753\) |
2.3.0.a.1, 172.6.0.?, 994.6.0.?, 85484.12.0.? |
$[ ]$ |
$1$ |