Learn more

Refine search


Results (36 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
382360.a1 382360.a \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -99583, 11921767]$ \(y^2=x^3-99583x+11921767\) 8690.2.0.? $[ ]$
382360.b1 382360.b \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $5.696300352$ $[0, 1, 0, -6257676, -176210960]$ \(y^2=x^3+x^2-6257676x-176210960\) 2.3.0.a.1, 10.6.0.a.1, 3476.6.0.?, 17380.12.0.? $[(-1885, 70180)]$
382360.b2 382360.b \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $11.39260070$ $[0, 1, 0, -4367051, -3504467210]$ \(y^2=x^3+x^2-4367051x-3504467210\) 2.3.0.a.1, 20.6.0.c.1, 1738.6.0.?, 17380.12.0.? $[(3942022/29, 6856375000/29)]$
382360.c1 382360.c \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -15613880, -23752509200]$ \(y^2=x^3+x^2-15613880x-23752509200\) 2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? $[ ]$
382360.c2 382360.c \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -972880, -373760400]$ \(y^2=x^3+x^2-972880x-373760400\) 2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? $[ ]$
382360.d1 382360.d \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $1.673457989$ $[0, 1, 0, -9720, 67648]$ \(y^2=x^3+x^2-9720x+67648\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(128, 968)]$
382360.d2 382360.d \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $0.836728994$ $[0, 1, 0, 2380, 9568]$ \(y^2=x^3+x^2+2380x+9568\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(18, 242)]$
382360.e1 382360.e \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $2.397050395$ $[0, 1, 0, -21215, 1073158]$ \(y^2=x^3+x^2-21215x+1073158\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(3538, 210298)]$
382360.e2 382360.e \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $4.794100790$ $[0, 1, 0, 26580, 5260000]$ \(y^2=x^3+x^2+26580x+5260000\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(-105, 1150)]$
382360.f1 382360.f \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $2$ $\Z/2\Z$ $1.146842526$ $[0, 1, 0, -122855, 16494850]$ \(y^2=x^3+x^2-122855x+16494850\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(115, 1975), (150, 1210)]$
382360.f2 382360.f \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $2$ $\Z/2\Z$ $1.146842526$ $[0, 1, 0, -75060, 29514208]$ \(y^2=x^3+x^2-75060x+29514208\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(986, 30250), (111, 4750)]$
382360.g1 382360.g \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -60056, -5644175]$ \(y^2=x^3-x^2-60056x-5644175\) 8690.2.0.? $[ ]$
382360.h1 382360.h \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 14480, -1564660]$ \(y^2=x^3-x^2+14480x-1564660\) 440.2.0.? $[ ]$
382360.i1 382360.i \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $0.525261273$ $[0, -1, 0, -41180, -2413475]$ \(y^2=x^3-x^2-41180x-2413475\) 8690.2.0.? $[(-150, 605)]$
382360.j1 382360.j \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -15868787, 24310866734]$ \(y^2=x^3-15868787x+24310866734\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 44.12.0-4.c.1.1, 88.24.0.?, $\ldots$ $[ ]$
382360.j2 382360.j \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10786787, -13504972866]$ \(y^2=x^3-10786787x-13504972866\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 88.24.0.?, 632.24.0.?, $\ldots$ $[ ]$
382360.j3 382360.j \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1227787, 185426934]$ \(y^2=x^3-1227787x+185426934\) 2.6.0.a.1, 8.12.0.a.1, 44.12.0-2.a.1.1, 88.24.0.?, 316.12.0.?, $\ldots$ $[ ]$
382360.j4 382360.j \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 284713, 22379434]$ \(y^2=x^3+284713x+22379434\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 44.12.0-4.c.1.2, 88.24.0.?, $\ldots$ $[ ]$
382360.k1 382360.k \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -22627, 1205886]$ \(y^2=x^3-22627x+1205886\) 2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? $[ ]$
382360.k2 382360.k \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1573, 87846]$ \(y^2=x^3+1573x+87846\) 2.3.0.a.1, 40.6.0.c.1, 158.6.0.?, 3160.12.0.? $[ ]$
382360.l1 382360.l \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1096, -13895]$ \(y^2=x^3+x^2-1096x-13895\) 8690.2.0.? $[ ]$
382360.m1 382360.m \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $2.255961456$ $[0, 1, 0, -6816, -113731]$ \(y^2=x^3+x^2-6816x-113731\) 8690.2.0.? $[(106, 605)]$
382360.n1 382360.n \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -132656, 17963669]$ \(y^2=x^3+x^2-132656x+17963669\) 8690.2.0.? $[ ]$
382360.o1 382360.o \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -16980, -857155]$ \(y^2=x^3+x^2-16980x-857155\) 8690.2.0.? $[ ]$
382360.p1 382360.p \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -3065, -69445]$ \(y^2=x^3+x^2-3065x-69445\) 790.2.0.? $[ ]$
382360.q1 382360.q \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $4.257421372$ $[0, -1, 0, -115716, -11383084]$ \(y^2=x^3-x^2-115716x-11383084\) 2.3.0.a.1, 10.6.0.a.1, 3476.6.0.?, 17380.12.0.? $[(3490/3, 37268/3)]$
382360.q2 382360.q \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $2.128710686$ $[0, -1, 0, -40091, 2955416]$ \(y^2=x^3-x^2-40091x+2955416\) 2.3.0.a.1, 20.6.0.c.1, 1738.6.0.?, 17380.12.0.? $[(235, 2541)]$
382360.r1 382360.r \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3356096, -2360733604]$ \(y^2=x^3-x^2-3356096x-2360733604\) 2.3.0.a.1, 44.6.0.a.1, 316.6.0.?, 3476.12.0.? $[ ]$
382360.r2 382360.r \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -135076, -63502140]$ \(y^2=x^3-x^2-135076x-63502140\) 2.3.0.a.1, 44.6.0.b.1, 158.6.0.?, 3476.12.0.? $[ ]$
382360.s1 382360.s \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $11.47735398$ $[0, -1, 0, -560996, 161916020]$ \(y^2=x^3-x^2-560996x+161916020\) 2.3.0.a.1, 20.6.0.c.1, 1738.6.0.?, 17380.12.0.? $[(3484918/89, 183038100/89)]$
382360.s2 382360.s \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $5.738676992$ $[0, -1, 0, -35251, 2510136]$ \(y^2=x^3-x^2-35251x+2510136\) 2.3.0.a.1, 10.6.0.a.1, 3476.6.0.?, 17380.12.0.? $[(-549/5, 226149/5)]$
382360.t1 382360.t \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $4.935162966$ $[0, -1, 0, -842200, 297769980]$ \(y^2=x^3-x^2-842200x+297769980\) 17380.2.0.? $[(4602, 306372)]$
382360.u1 382360.u \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $1.616657596$ $[0, -1, 0, 14480, 75132]$ \(y^2=x^3-x^2+14480x+75132\) 17380.2.0.? $[(774, 21780)]$
382360.v1 382360.v \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $18.30842435$ $[0, -1, 0, -280760, 57328460]$ \(y^2=x^3-x^2-280760x+57328460\) 2.3.0.a.1, 316.6.0.?, 440.6.0.?, 34760.12.0.? $[(1253675173/1482, 29604492052091/1482)]$
382360.v2 382360.v \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $1$ $\Z/2\Z$ $9.154212179$ $[0, -1, 0, -14560, 1213500]$ \(y^2=x^3-x^2-14560x+1213500\) 2.3.0.a.1, 158.6.0.?, 440.6.0.?, 34760.12.0.? $[(703605/38, 574373085/38)]$
382360.w1 382360.w \( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -266563, -41158513]$ \(y^2=x^3-266563x-41158513\) 8690.2.0.? $[ ]$
  displayed columns for results