Learn more

Refine search


Results (1-50 of 65 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
371943.a1 371943.a \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.550328545$ $[0, 0, 1, -35270427, 473048432226]$ \(y^2+y=x^3-35270427x+473048432226\) 374.2.0.? $[(6647, 729580)]$
371943.b1 371943.b \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 4259571, 424307560]$ \(y^2+y=x^3+4259571x+424307560\) 22.2.0.a.1 $[ ]$
371943.c1 371943.c \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 14739, 86364]$ \(y^2+y=x^3+14739x+86364\) 22.2.0.a.1 $[ ]$
371943.d1 371943.d \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -122043, 96285046]$ \(y^2+y=x^3-122043x+96285046\) 374.2.0.? $[ ]$
371943.e1 371943.e \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.407631166$ $[1, -1, 1, -23897, -112582330]$ \(y^2+xy+y=x^3-x^2-23897x-112582330\) 29172.2.0.? $[(540, 5365)]$
371943.f1 371943.f \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 328, -1870]$ \(y^2+xy+y=x^3-x^2+328x-1870\) 286.2.0.? $[ ]$
371943.g1 371943.g \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -16840229, 20965900862]$ \(y^2+xy+y=x^3-x^2-16840229x+20965900862\) 156.2.0.? $[ ]$
371943.h1 371943.h \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.605802247$ $[1, -1, 1, -1439861, 665370956]$ \(y^2+xy+y=x^3-x^2-1439861x+665370956\) 2.3.0.a.1, 68.6.0.b.1, 132.6.0.?, 1122.6.0.?, 2244.12.0.? $[(702, 58)]$
371943.h2 371943.h \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.802901123$ $[1, -1, 1, -1439096, 666112700]$ \(y^2+xy+y=x^3-x^2-1439096x+666112700\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(984, 13723)]$
371943.i1 371943.i \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -519821, -141037270]$ \(y^2+xy+y=x^3-x^2-519821x-141037270\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? $[ ]$
371943.i2 371943.i \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 4714, -6966124]$ \(y^2+xy+y=x^3-x^2+4714x-6966124\) 2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? $[ ]$
371943.j1 371943.j \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.317402944$ $[1, -1, 1, -24458, 1371458]$ \(y^2+xy+y=x^3-x^2-24458x+1371458\) 156.2.0.? $[(-114, 1690)]$
371943.k1 371943.k \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.578984630$ $[1, -1, 1, -10025, 393550]$ \(y^2+xy+y=x^3-x^2-10025x+393550\) 29172.2.0.? $[(115, 809)]$
371943.l1 371943.l \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.454801293$ $[1, -1, 1, -7011050, -2830673570]$ \(y^2+xy+y=x^3-x^2-7011050x-2830673570\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.? $[(3770, 154030)]$
371943.l2 371943.l \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.909602586$ $[1, -1, 1, -5758235, -5313251774]$ \(y^2+xy+y=x^3-x^2-5758235x-5313251774\) 2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.? $[(5474, 353872)]$
371943.m1 371943.m \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.092682055$ $[1, -1, 1, -287465, 58839176]$ \(y^2+xy+y=x^3-x^2-287465x+58839176\) 2.3.0.a.1, 66.6.0.a.1, 68.6.0.b.1, 2244.12.0.? $[(334, -122)]$
371943.m2 371943.m \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.046341027$ $[1, -1, 1, -66380, 146919440]$ \(y^2+xy+y=x^3-x^2-66380x+146919440\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(396, 13315)]$
371943.n1 371943.n \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.357760710$ $[1, -1, 1, -7068272, 6709701372]$ \(y^2+xy+y=x^3-x^2-7068272x+6709701372\) 156.2.0.? $[(-9825/2, 779139/2)]$
371943.o1 371943.o \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -416119739, 3267303029178]$ \(y^2+xy+y=x^3-x^2-416119739x+3267303029178\) 2.3.0.a.1, 68.6.0.b.1, 132.6.0.?, 1122.6.0.?, 2244.12.0.? $[ ]$
371943.o2 371943.o \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -415898654, 3270948101790]$ \(y^2+xy+y=x^3-x^2-415898654x+3270948101790\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
371943.p1 371943.p \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -58271, 4281144]$ \(y^2+xy+y=x^3-x^2-58271x+4281144\) 156.2.0.? $[ ]$
371943.q1 371943.q \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 94882, -8806476]$ \(y^2+xy+y=x^3-x^2+94882x-8806476\) 286.2.0.? $[ ]$
371943.r1 371943.r \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -100193, 11637384]$ \(y^2+xy+y=x^3-x^2-100193x+11637384\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.b.1, 884.12.0.? $[ ]$
371943.r2 371943.r \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 68872, 46802904]$ \(y^2+xy+y=x^3-x^2+68872x+46802904\) 2.3.0.a.1, 52.6.0.a.1, 68.6.0.c.1, 884.12.0.? $[ ]$
371943.s1 371943.s \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.853776806$ $[0, 0, 1, -143922, -21046064]$ \(y^2+y=x^3-143922x-21046064\) 374.2.0.? $[(442, 1300)]$
371943.t1 371943.t \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.975508994$ $[0, 0, 1, 58956, -41739620]$ \(y^2+y=x^3+58956x-41739620\) 22.2.0.a.1 $[(310, 2515)]$
371943.u1 371943.u \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.263060450$ $[0, 0, 1, -26091498, 51822634747]$ \(y^2+y=x^3-26091498x+51822634747\) 22.2.0.a.1 $[(-799, 268625)]$
371943.v1 371943.v \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -3468, 286182]$ \(y^2+y=x^3-3468x+286182\) 22.2.0.a.1 $[ ]$
371943.w1 371943.w \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.460813072$ $[0, 0, 1, 204, -8496]$ \(y^2+y=x^3+204x-8496\) 22.2.0.a.1 $[(32, 175)]$
371943.x1 371943.x \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.569511677$ $[1, -1, 0, -54, 319]$ \(y^2+xy=x^3-x^2-54x+319\) 286.2.0.? $[(-6, 23)]$
371943.y1 371943.y \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -38049, 2176064]$ \(y^2+xy=x^3-x^2-38049x+2176064\) 2.3.0.a.1, 4.12.0.f.1, 34.6.0.a.1, 68.24.0.h.1, 104.24.0.?, $\ldots$ $[ ]$
371943.y2 371943.y \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 91236, 13682429]$ \(y^2+xy=x^3-x^2+91236x+13682429\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 68.12.0.l.1, 104.24.0.?, $\ldots$ $[ ]$
371943.z1 371943.z \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $9.711490556$ $[1, -1, 0, -6780861, -6698299374]$ \(y^2+xy=x^3-x^2-6780861x-6698299374\) 156.2.0.? $[(-265914/13, 20592612/13)]$
371943.ba1 371943.ba \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $13.53238195$ $[1, -1, 0, -17853318, -29030850959]$ \(y^2+xy=x^3-x^2-17853318x-29030850959\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0.g.1, 176.24.0.?, $\ldots$ $[(509499/10, 108121637/10)]$
371943.ba2 371943.ba \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.766190977$ $[1, -1, 0, -7826463, 8162546494]$ \(y^2+xy=x^3-x^2-7826463x+8162546494\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 24.24.0.bl.1, $\ldots$ $[(156965/4, 59568893/4)]$
371943.ba3 371943.ba \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.383095488$ $[1, -1, 0, -1232928, -352344605]$ \(y^2+xy=x^3-x^2-1232928x-352344605\) 2.6.0.a.1, 4.12.0.b.1, 12.24.0.c.1, 68.24.0-4.b.1.2, 88.24.0.?, $\ldots$ $[(1626, 43231)]$
371943.ba4 371943.ba \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.766190977$ $[1, -1, 0, -1115883, -453354440]$ \(y^2+xy=x^3-x^2-1115883x-453354440\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0.m.1, 88.24.0.?, 104.24.0.?, $\ldots$ $[(2520, 111580)]$
371943.ba5 371943.ba \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $13.53238195$ $[1, -1, 0, -62478, -8606849]$ \(y^2+xy=x^3-x^2-62478x-8606849\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0.g.1, 88.24.0.?, $\ldots$ $[(603822/31, 411844199/31)]$
371943.ba6 371943.ba \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.691547744$ $[1, -1, 0, 3487887, -2404010804]$ \(y^2+xy=x^3-x^2+3487887x-2404010804\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0.n.1, 12.12.0.g.1, $\ldots$ $[(1560, 81874)]$
371943.bb1 371943.bb \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.235603476$ $[1, -1, 0, 691812, 210631441]$ \(y^2+xy=x^3-x^2+691812x+210631441\) 29172.2.0.? $[(20231/2, 2898091/2)]$
371943.bc1 371943.bc \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -14872572, 22081155547]$ \(y^2+xy=x^3-x^2-14872572x+22081155547\) 286.2.0.? $[ ]$
371943.bd1 371943.bd \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -90222, -10535635]$ \(y^2+xy=x^3-x^2-90222x-10535635\) 29172.2.0.? $[ ]$
371943.be1 371943.be \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -33867, -1795986]$ \(y^2+xy=x^3-x^2-33867x-1795986\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
371943.be2 371943.be \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 5148, -180765]$ \(y^2+xy=x^3-x^2+5148x-180765\) 2.3.0.a.1, 12.6.0.b.1, 286.6.0.?, 1716.12.0.? $[ ]$
371943.bf1 371943.bf \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1089667239507, -93463849214530632]$ \(y^2+xy=x^3-x^2-1089667239507x-93463849214530632\) 2.3.0.a.1, 66.6.0.a.1, 68.6.0.b.1, 2244.12.0.? $[ ]$
371943.bf2 371943.bf \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 4246787202858, -738695623131771255]$ \(y^2+xy=x^3-x^2+4246787202858x-738695623131771255\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
371943.bg1 371943.bg \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -63099447, 76491285830]$ \(y^2+xy=x^3-x^2-63099447x+76491285830\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.? $[ ]$
371943.bg2 371943.bg \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -51824112, 143509622003]$ \(y^2+xy=x^3-x^2-51824112x+143509622003\) 2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.? $[ ]$
371943.bh1 371943.bh \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -51462, 4506543]$ \(y^2+xy=x^3-x^2-51462x+4506543\) 286.2.0.? $[ ]$
371943.bi1 371943.bi \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2394, 42309]$ \(y^2+xy=x^3-x^2+2394x+42309\) 29172.2.0.? $[ ]$
Next   displayed columns for results