Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
364815.a1 |
364815a1 |
364815.a |
364815a |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1.202777059$ |
$1$ |
|
$12$ |
$248832$ |
$0.247481$ |
$45056/1675$ |
$0.69808$ |
$2.04964$ |
$[0, 0, 1, 33, 580]$ |
\(y^2+y=x^3+33x+580\) |
134.2.0.? |
$[(-2, 22), (-7, 2)]$ |
364815.b1 |
364815b1 |
364815.b |
364815b |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{36} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$611020800$ |
$4.192429$ |
$344981836779052322816/41728985197282986075$ |
$1.02635$ |
$5.74731$ |
$[0, 0, 1, 159117783, -11142367443320]$ |
\(y^2+y=x^3+159117783x-11142367443320\) |
134.2.0.? |
$[ ]$ |
364815.c1 |
364815c1 |
364815.c |
364815c |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{12} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9400320$ |
$2.113865$ |
$-8569817657344/147750075$ |
$0.85549$ |
$3.96557$ |
$[0, 0, 1, -464277, 123563052]$ |
\(y^2+y=x^3-464277x+123563052\) |
134.2.0.? |
$[ ]$ |
364815.d1 |
364815d2 |
364815.d |
364815d |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5 \cdot 11^{10} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7741440$ |
$2.355400$ |
$827142723603/328617245$ |
$0.97814$ |
$4.03807$ |
$[1, -1, 1, -638903, -109893968]$ |
\(y^2+xy+y=x^3-x^2-638903x-109893968\) |
2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[ ]$ |
364815.d2 |
364815d1 |
364815.d |
364815d |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3870720$ |
$2.008827$ |
$548749795203/202675$ |
$0.82746$ |
$4.00603$ |
$[1, -1, 1, -557228, -159911738]$ |
\(y^2+xy+y=x^3-x^2-557228x-159911738\) |
2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[ ]$ |
364815.e1 |
364815e4 |
364815.e |
364815e |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{7} \cdot 5^{8} \cdot 11^{7} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17688$ |
$48$ |
$0$ |
$13.48734980$ |
$1$ |
|
$0$ |
$22609920$ |
$2.664623$ |
$181938238527312721/863671875$ |
$0.92162$ |
$4.74122$ |
$[1, -1, 1, -12855668, -17738202468]$ |
\(y^2+xy+y=x^3-x^2-12855668x-17738202468\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 88.12.0.?, 264.24.0.?, $\ldots$ |
$[(51625823/34, 368822012607/34)]$ |
364815.e2 |
364815e2 |
364815.e |
364815e |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{8} \cdot 5^{4} \cdot 11^{8} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8844$ |
$48$ |
$0$ |
$6.743674904$ |
$1$ |
|
$2$ |
$11304960$ |
$2.318050$ |
$46659888108001/3055325625$ |
$0.87012$ |
$4.09560$ |
$[1, -1, 1, -816773, -267358044]$ |
\(y^2+xy+y=x^3-x^2-816773x-267358044\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 44.12.0.b.1, 132.24.0.?, 268.12.0.?, $\ldots$ |
$[(-9819/4, -81187/4)]$ |
364815.e3 |
364815e1 |
364815.e |
364815e |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{7} \cdot 5^{2} \cdot 11^{10} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17688$ |
$48$ |
$0$ |
$3.371837452$ |
$1$ |
|
$3$ |
$5652480$ |
$1.971476$ |
$337298881681/73571025$ |
$0.83244$ |
$3.71068$ |
$[1, -1, 1, -157928, 19107762]$ |
\(y^2+xy+y=x^3-x^2-157928x+19107762\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 88.12.0.?, 132.12.0.?, $\ldots$ |
$[(135, 416)]$ |
364815.e4 |
364815e3 |
364815.e |
364815e |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{10} \cdot 5^{2} \cdot 11^{7} \cdot 67^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17688$ |
$48$ |
$0$ |
$3.371837452$ |
$1$ |
|
$2$ |
$22609920$ |
$2.664623$ |
$26997300089999/448866220275$ |
$0.91579$ |
$4.31231$ |
$[1, -1, 1, 680602, -1138231344]$ |
\(y^2+xy+y=x^3-x^2+680602x-1138231344\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 22.6.0.a.1, 44.12.0.g.1, $\ldots$ |
$[(3215, 183522)]$ |
364815.f1 |
364815f2 |
364815.f |
364815f |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{8} \cdot 11^{8} \cdot 67 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$10.53654578$ |
$1$ |
|
$6$ |
$9953280$ |
$2.558411$ |
$13870708507683/3166796875$ |
$0.86634$ |
$4.25822$ |
$[1, -1, 1, -1635338, 626749192]$ |
\(y^2+xy+y=x^3-x^2-1635338x+626749192\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(190, 17873), (6527/2, 377219/2)]$ |
364815.f2 |
364815f1 |
364815.f |
364815f |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{7} \cdot 67^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$10.53654578$ |
$1$ |
|
$9$ |
$4976640$ |
$2.211838$ |
$501891267123/30861875$ |
$0.82811$ |
$3.99906$ |
$[1, -1, 1, -540893, -144615644]$ |
\(y^2+xy+y=x^3-x^2-540893x-144615644\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(-395, 2897), (-382, 2671)]$ |
364815.g1 |
364815g4 |
364815.g |
364815g |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{7} \cdot 5 \cdot 11^{14} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$8.818711208$ |
$1$ |
|
$0$ |
$12288000$ |
$2.738605$ |
$20106118884162961/215430675405$ |
$0.96970$ |
$4.56923$ |
$[1, -1, 1, -6169208, -5841432858]$ |
\(y^2+xy+y=x^3-x^2-6169208x-5841432858\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 264.12.0.?, 660.12.0.?, $\ldots$ |
$[(14555/2, 1113393/2)]$ |
364815.g2 |
364815g2 |
364815.g |
364815g |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{8} \cdot 5^{2} \cdot 11^{10} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$44220$ |
$48$ |
$0$ |
$4.409355604$ |
$1$ |
|
$4$ |
$6144000$ |
$2.392033$ |
$28993860495361/14787776025$ |
$0.89152$ |
$4.05845$ |
$[1, -1, 1, -696983, 77325702]$ |
\(y^2+xy+y=x^3-x^2-696983x+77325702\) |
2.6.0.a.1, 20.12.0.a.1, 132.12.0.?, 660.24.0.?, 804.12.0.?, $\ldots$ |
$[(3185, 172071)]$ |
364815.g3 |
364815g1 |
364815.g |
364815g |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{7} \cdot 5^{4} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$2.204677802$ |
$1$ |
|
$3$ |
$3072000$ |
$2.045460$ |
$15107691357361/15200625$ |
$0.85988$ |
$4.00755$ |
$[1, -1, 1, -560858, 161668752]$ |
\(y^2+xy+y=x^3-x^2-560858x+161668752\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 132.12.0.?, 402.6.0.?, $\ldots$ |
$[(-448, 18192)]$ |
364815.g4 |
364815g3 |
364815.g |
364815g |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{10} \cdot 5 \cdot 11^{8} \cdot 67^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$8.818711208$ |
$1$ |
|
$0$ |
$12288000$ |
$2.738605$ |
$1500297830724239/987505684605$ |
$0.91979$ |
$4.36658$ |
$[1, -1, 1, 2597242, 596495562]$ |
\(y^2+xy+y=x^3-x^2+2597242x+596495562\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0.h.1, 132.12.0.?, 660.24.0.?, $\ldots$ |
$[(22867/6, 10736107/6)]$ |
364815.h1 |
364815h1 |
364815.h |
364815h |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{9} \cdot 5^{5} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4020$ |
$2$ |
$0$ |
$3.315255654$ |
$1$ |
|
$2$ |
$5068800$ |
$2.160389$ |
$-797628843/209375$ |
$0.77673$ |
$3.89953$ |
$[1, -1, 1, -312203, 81029512]$ |
\(y^2+xy+y=x^3-x^2-312203x+81029512\) |
4020.2.0.? |
$[(575, 9271)]$ |
364815.i1 |
364815i1 |
364815.i |
364815i |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{3} \cdot 5^{5} \cdot 11^{2} \cdot 67 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4020$ |
$2$ |
$0$ |
$0.554652163$ |
$1$ |
|
$14$ |
$153600$ |
$0.412135$ |
$-797628843/209375$ |
$0.77673$ |
$2.26146$ |
$[1, -1, 1, -287, 2324]$ |
\(y^2+xy+y=x^3-x^2-287x+2324\) |
4020.2.0.? |
$[(7, 21), (-18, 46)]$ |
364815.j1 |
364815j1 |
364815.j |
364815j |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{14} \cdot 11^{8} \cdot 67^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1877686272$ |
$5.158890$ |
$2302197464086783629848471/36991647981707763671875$ |
$1.03169$ |
$6.64925$ |
$[1, -1, 1, 14817079903, 3591525399479196]$ |
\(y^2+xy+y=x^3-x^2+14817079903x+3591525399479196\) |
134.2.0.? |
$[ ]$ |
364815.k1 |
364815k2 |
364815.k |
364815k |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11^{7} \cdot 67^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1.733024438$ |
$1$ |
|
$12$ |
$11059200$ |
$2.522804$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$4.74936$ |
$[1, -1, 1, -13310507, 18694648514]$ |
\(y^2+xy+y=x^3-x^2-13310507x+18694648514\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(1972, 9601), (2157, 2941)]$ |
364815.k2 |
364815k1 |
364815.k |
364815k |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{8} \cdot 11^{8} \cdot 67 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1.733024438$ |
$1$ |
|
$13$ |
$5529600$ |
$2.176231$ |
$1333433581670763/3166796875$ |
$0.89630$ |
$4.10003$ |
$[1, -1, 1, -832382, 291909764]$ |
\(y^2+xy+y=x^3-x^2-832382x+291909764\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(322, 7401), (447, 2776)]$ |
364815.l1 |
364815l1 |
364815.l |
364815l |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{10} \cdot 67^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$24330240$ |
$3.130314$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.80909$ |
$[1, -1, 1, -17176457, -22987152944]$ |
\(y^2+xy+y=x^3-x^2-17176457x-22987152944\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[ ]$ |
364815.l2 |
364815l2 |
364815.l |
364815l |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{9} \cdot 5^{2} \cdot 11^{8} \cdot 67^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$48660480$ |
$3.476887$ |
$106251939163685853/273636606061225$ |
$1.03455$ |
$5.05327$ |
$[1, -1, 1, 32236918, -130866433244]$ |
\(y^2+xy+y=x^3-x^2+32236918x-130866433244\) |
2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? |
$[ ]$ |
364815.m1 |
364815m1 |
364815.m |
364815m |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{10} \cdot 5^{6} \cdot 11^{10} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13989888$ |
$2.749096$ |
$3639707951/84796875$ |
$0.89940$ |
$4.39254$ |
$[1, -1, 1, 853753, -1902663606]$ |
\(y^2+xy+y=x^3-x^2+853753x-1902663606\) |
134.2.0.? |
$[ ]$ |
364815.n1 |
364815n2 |
364815.n |
364815n |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{12} \cdot 5 \cdot 11^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$2.635776362$ |
$1$ |
|
$4$ |
$3686400$ |
$2.094730$ |
$4011342040369/179986455$ |
$0.84986$ |
$3.90401$ |
$[1, -1, 1, -360482, -79920574]$ |
\(y^2+xy+y=x^3-x^2-360482x-79920574\) |
2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? |
$[(-351, 1984)]$ |
364815.n2 |
364815n1 |
364815.n |
364815n |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$1.317888181$ |
$1$ |
|
$7$ |
$1843200$ |
$1.748156$ |
$19443408769/5472225$ |
$0.91817$ |
$3.48788$ |
$[1, -1, 1, -61007, 4172006]$ |
\(y^2+xy+y=x^3-x^2-61007x+4172006\) |
2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? |
$[(234, 1516)]$ |
364815.o1 |
364815o2 |
364815.o |
364815o |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1.094175011$ |
$1$ |
|
$8$ |
$2150400$ |
$1.681604$ |
$5292585633483/5066875$ |
$0.88219$ |
$3.66831$ |
$[1, -1, 1, -131792, 18433066]$ |
\(y^2+xy+y=x^3-x^2-131792x+18433066\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(124, 1934)]$ |
364815.o2 |
364815o1 |
364815.o |
364815o |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{2} \cdot 11^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$2.188350022$ |
$1$ |
|
$7$ |
$1075200$ |
$1.335030$ |
$2444008923/1234475$ |
$0.83115$ |
$3.06861$ |
$[1, -1, 1, -10187, 143674]$ |
\(y^2+xy+y=x^3-x^2-10187x+143674\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(14, 53)]$ |
364815.p1 |
364815p1 |
364815.p |
364815p |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1824768$ |
$1.548859$ |
$-63088729/1675$ |
$0.74420$ |
$3.41838$ |
$[1, -1, 1, -44672, 3727694]$ |
\(y^2+xy+y=x^3-x^2-44672x+3727694\) |
134.2.0.? |
$[ ]$ |
364815.q1 |
364815q1 |
364815.q |
364815q |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1.161679631$ |
$1$ |
|
$2$ |
$85248$ |
$0.257034$ |
$2883584/1675$ |
$0.85286$ |
$2.05057$ |
$[0, 0, 1, 132, -36]$ |
\(y^2+y=x^3+132x-36\) |
134.2.0.? |
$[(14, 67)]$ |
364815.r1 |
364815r1 |
364815.r |
364815r |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{6} \cdot 67 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$2.277565471$ |
$1$ |
|
$8$ |
$358400$ |
$1.056694$ |
$-884736/1675$ |
$1.01110$ |
$2.82062$ |
$[0, 0, 1, -2178, 80858]$ |
\(y^2+y=x^3-2178x+80858\) |
134.2.0.? |
$[(-44, 302), (198, 2722)]$ |
364815.s1 |
364815s1 |
364815.s |
364815s |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$5.300431846$ |
$1$ |
|
$0$ |
$937728$ |
$1.455982$ |
$2883584/1675$ |
$0.85286$ |
$3.17396$ |
$[0, 0, 1, 15972, 47583]$ |
\(y^2+y=x^3+15972x+47583\) |
134.2.0.? |
$[(1049/2, 37751/2)]$ |
364815.t1 |
364815t2 |
364815.t |
364815t |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{10} \cdot 5^{6} \cdot 11^{6} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4422$ |
$16$ |
$0$ |
$1.486241582$ |
$1$ |
|
$0$ |
$12441600$ |
$2.704151$ |
$-2989967081734144/380653171875$ |
$1.01643$ |
$4.43596$ |
$[0, 0, 1, -3268452, -2512116423]$ |
\(y^2+y=x^3-3268452x-2512116423\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 4422.16.0.? |
$[(16313/2, 1824071/2)]$ |
364815.t2 |
364815t1 |
364815.t |
364815t |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{18} \cdot 5^{2} \cdot 11^{6} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4422$ |
$16$ |
$0$ |
$4.458724748$ |
$1$ |
|
$0$ |
$4147200$ |
$2.154846$ |
$1503484706816/890163675$ |
$1.04611$ |
$3.82738$ |
$[0, 0, 1, 259908, 7750080]$ |
\(y^2+y=x^3+259908x+7750080\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 4422.16.0.? |
$[(1265/2, 88205/2)]$ |
364815.u1 |
364815u1 |
364815.u |
364815u |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{14} \cdot 5^{8} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17031168$ |
$2.988068$ |
$-34402596388864/171713671875$ |
$0.95153$ |
$4.62307$ |
$[0, 0, 1, -3649602, 8325608310]$ |
\(y^2+y=x^3-3649602x+8325608310\) |
134.2.0.? |
$[ ]$ |
364815.v1 |
364815v1 |
364815.v |
364815v |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{14} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1548288$ |
$1.789122$ |
$-34402596388864/171713671875$ |
$0.95153$ |
$3.49969$ |
$[0, 0, 1, -30162, -6255153]$ |
\(y^2+y=x^3-30162x-6255153\) |
134.2.0.? |
$[ ]$ |
364815.w1 |
364815w1 |
364815.w |
364815w |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{9} \cdot 5^{5} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4020$ |
$2$ |
$0$ |
$5.951687994$ |
$1$ |
|
$0$ |
$460800$ |
$0.961441$ |
$-797628843/209375$ |
$0.77673$ |
$2.77615$ |
$[1, -1, 0, -2580, -60175]$ |
\(y^2+xy=x^3-x^2-2580x-60175\) |
4020.2.0.? |
$[(263/2, 1547/2)]$ |
364815.x1 |
364815x2 |
364815.x |
364815x |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$39.87956128$ |
$1$ |
|
$0$ |
$33177600$ |
$3.072109$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$5.26405$ |
$[1, -1, 0, -119794560, -504635715325]$ |
\(y^2+xy=x^3-x^2-119794560x-504635715325\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(8632736772050764519/6198242, 25306824379139681785175994647/6198242)]$ |
364815.x2 |
364815x1 |
364815.x |
364815x |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{8} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$19.93978064$ |
$1$ |
|
$1$ |
$16588800$ |
$2.725536$ |
$1333433581670763/3166796875$ |
$0.89630$ |
$4.61472$ |
$[1, -1, 0, -7491435, -7874072200]$ |
\(y^2+xy=x^3-x^2-7491435x-7874072200\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(-189122588888/10753, 2467786494175888/10753)]$ |
364815.y1 |
364815y2 |
364815.y |
364815y |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{8} \cdot 5 \cdot 11^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$4.327127093$ |
$1$ |
|
$0$ |
$2334720$ |
$1.898367$ |
$2912566550041/2222055$ |
$0.84611$ |
$3.87901$ |
$[1, -1, 0, -324000, -70857099]$ |
\(y^2+xy=x^3-x^2-324000x-70857099\) |
2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? |
$[(3015/2, 81927/2)]$ |
364815.y2 |
364815y1 |
364815.y |
364815y |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{7} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$2.163563546$ |
$1$ |
|
$3$ |
$1167360$ |
$1.551792$ |
$1263214441/608025$ |
$0.78854$ |
$3.27442$ |
$[1, -1, 0, -24525, -600264]$ |
\(y^2+xy=x^3-x^2-24525x-600264\) |
2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? |
$[(300, 4206)]$ |
364815.z1 |
364815z1 |
364815.z |
364815z |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{11} \cdot 5^{6} \cdot 11^{6} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$5.190101625$ |
$1$ |
|
$3$ |
$4147200$ |
$2.101673$ |
$2912566550041/254390625$ |
$0.91283$ |
$3.87901$ |
$[1, -1, 0, -324000, -65328125]$ |
\(y^2+xy=x^3-x^2-324000x-65328125\) |
2.3.0.a.1, 20.6.0.b.1, 402.6.0.?, 4020.12.0.? |
$[(21750, 3195625)]$ |
364815.z2 |
364815z2 |
364815.z |
364815z |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{16} \cdot 5^{3} \cdot 11^{6} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$10.38020325$ |
$1$ |
|
$0$ |
$8294400$ |
$2.448246$ |
$3883959939959/33133870125$ |
$0.95785$ |
$4.10609$ |
$[1, -1, 0, 356625, -303955250]$ |
\(y^2+xy=x^3-x^2+356625x-303955250\) |
2.3.0.a.1, 20.6.0.a.1, 804.6.0.?, 4020.12.0.? |
$[(347901/4, 204577915/4)]$ |
364815.ba1 |
364815ba1 |
364815.ba |
364815ba |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11^{10} \cdot 67^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$4.121388159$ |
$1$ |
|
$3$ |
$8110080$ |
$2.581005$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.29441$ |
$[1, -1, 0, -1908495, 852012200]$ |
\(y^2+xy=x^3-x^2-1908495x+852012200\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(1048, 928)]$ |
364815.ba2 |
364815ba2 |
364815.ba |
364815ba |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{3} \cdot 5^{2} \cdot 11^{8} \cdot 67^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$8.242776318$ |
$1$ |
|
$0$ |
$16220160$ |
$2.927582$ |
$106251939163685853/273636606061225$ |
$1.03455$ |
$4.53858$ |
$[1, -1, 0, 3581880, 4845710975]$ |
\(y^2+xy=x^3-x^2+3581880x+4845710975\) |
2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? |
$[(-16507/4, 491967/4)]$ |
364815.bb1 |
364815bb2 |
364815.bb |
364815bb |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$6451200$ |
$2.230911$ |
$5292585633483/5066875$ |
$0.88219$ |
$4.18299$ |
$[1, -1, 0, -1186125, -496506664]$ |
\(y^2+xy=x^3-x^2-1186125x-496506664\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
364815.bb2 |
364815bb1 |
364815.bb |
364815bb |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{2} \cdot 11^{7} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3225600$ |
$1.884336$ |
$2444008923/1234475$ |
$0.83115$ |
$3.58330$ |
$[1, -1, 0, -91680, -3787525]$ |
\(y^2+xy=x^3-x^2-91680x-3787525\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
364815.bc1 |
364815bc2 |
364815.bc |
364815bc |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5 \cdot 11^{10} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$6.046978616$ |
$1$ |
|
$0$ |
$2580480$ |
$1.806095$ |
$827142723603/328617245$ |
$0.97814$ |
$3.52338$ |
$[1, -1, 0, -70989, 4093810]$ |
\(y^2+xy=x^3-x^2-70989x+4093810\) |
2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[(-2851/4, 218561/4)]$ |
364815.bc2 |
364815bc1 |
364815.bc |
364815bc |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$3.023489308$ |
$1$ |
|
$3$ |
$1290240$ |
$1.459522$ |
$548749795203/202675$ |
$0.82746$ |
$3.49134$ |
$[1, -1, 0, -61914, 5943295]$ |
\(y^2+xy=x^3-x^2-61914x+5943295\) |
2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[(1334, 47249)]$ |
364815.bd1 |
364815bd1 |
364815.bd |
364815bd |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$165888$ |
$0.349912$ |
$-63088729/1675$ |
$0.74420$ |
$2.29500$ |
$[1, -1, 0, -369, -2700]$ |
\(y^2+xy=x^3-x^2-369x-2700\) |
134.2.0.? |
$[ ]$ |
364815.be1 |
364815be2 |
364815.be |
364815be |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{8} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$2.608318956$ |
$1$ |
|
$0$ |
$3317760$ |
$2.009106$ |
$13870708507683/3166796875$ |
$0.86634$ |
$3.74354$ |
$[1, -1, 0, -181704, -23152365]$ |
\(y^2+xy=x^3-x^2-181704x-23152365\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(1959/2, 16191/2)]$ |