Learn more

Refine search


Results (1-50 of 58 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
364815.a1 364815.a \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\mathsf{trivial}$ $1.202777059$ $[0, 0, 1, 33, 580]$ \(y^2+y=x^3+33x+580\) 134.2.0.? $[(-2, 22), (-7, 2)]$
364815.b1 364815.b \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 159117783, -11142367443320]$ \(y^2+y=x^3+159117783x-11142367443320\) 134.2.0.? $[ ]$
364815.c1 364815.c \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -464277, 123563052]$ \(y^2+y=x^3-464277x+123563052\) 134.2.0.? $[ ]$
364815.d1 364815.d \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -638903, -109893968]$ \(y^2+xy+y=x^3-x^2-638903x-109893968\) 2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
364815.d2 364815.d \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -557228, -159911738]$ \(y^2+xy+y=x^3-x^2-557228x-159911738\) 2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
364815.e1 364815.e \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $13.48734980$ $[1, -1, 1, -12855668, -17738202468]$ \(y^2+xy+y=x^3-x^2-12855668x-17738202468\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 88.12.0.?, 264.24.0.?, $\ldots$ $[(51625823/34, 368822012607/34)]$
364815.e2 364815.e \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.743674904$ $[1, -1, 1, -816773, -267358044]$ \(y^2+xy+y=x^3-x^2-816773x-267358044\) 2.6.0.a.1, 12.12.0-2.a.1.1, 44.12.0.b.1, 132.24.0.?, 268.12.0.?, $\ldots$ $[(-9819/4, -81187/4)]$
364815.e3 364815.e \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $3.371837452$ $[1, -1, 1, -157928, 19107762]$ \(y^2+xy+y=x^3-x^2-157928x+19107762\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 88.12.0.?, 132.12.0.?, $\ldots$ $[(135, 416)]$
364815.e4 364815.e \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $3.371837452$ $[1, -1, 1, 680602, -1138231344]$ \(y^2+xy+y=x^3-x^2+680602x-1138231344\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 22.6.0.a.1, 44.12.0.g.1, $\ldots$ $[(3215, 183522)]$
364815.f1 364815.f \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\Z/2\Z$ $10.53654578$ $[1, -1, 1, -1635338, 626749192]$ \(y^2+xy+y=x^3-x^2-1635338x+626749192\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(190, 17873), (6527/2, 377219/2)]$
364815.f2 364815.f \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\Z/2\Z$ $10.53654578$ $[1, -1, 1, -540893, -144615644]$ \(y^2+xy+y=x^3-x^2-540893x-144615644\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[(-395, 2897), (-382, 2671)]$
364815.g1 364815.g \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $8.818711208$ $[1, -1, 1, -6169208, -5841432858]$ \(y^2+xy+y=x^3-x^2-6169208x-5841432858\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 264.12.0.?, 660.12.0.?, $\ldots$ $[(14555/2, 1113393/2)]$
364815.g2 364815.g \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.409355604$ $[1, -1, 1, -696983, 77325702]$ \(y^2+xy+y=x^3-x^2-696983x+77325702\) 2.6.0.a.1, 20.12.0.a.1, 132.12.0.?, 660.24.0.?, 804.12.0.?, $\ldots$ $[(3185, 172071)]$
364815.g3 364815.g \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $2.204677802$ $[1, -1, 1, -560858, 161668752]$ \(y^2+xy+y=x^3-x^2-560858x+161668752\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 132.12.0.?, 402.6.0.?, $\ldots$ $[(-448, 18192)]$
364815.g4 364815.g \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $8.818711208$ $[1, -1, 1, 2597242, 596495562]$ \(y^2+xy+y=x^3-x^2+2597242x+596495562\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0.h.1, 132.12.0.?, 660.24.0.?, $\ldots$ $[(22867/6, 10736107/6)]$
364815.h1 364815.h \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $3.315255654$ $[1, -1, 1, -312203, 81029512]$ \(y^2+xy+y=x^3-x^2-312203x+81029512\) 4020.2.0.? $[(575, 9271)]$
364815.i1 364815.i \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\mathsf{trivial}$ $0.554652163$ $[1, -1, 1, -287, 2324]$ \(y^2+xy+y=x^3-x^2-287x+2324\) 4020.2.0.? $[(7, 21), (-18, 46)]$
364815.j1 364815.j \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 14817079903, 3591525399479196]$ \(y^2+xy+y=x^3-x^2+14817079903x+3591525399479196\) 134.2.0.? $[ ]$
364815.k1 364815.k \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\Z/2\Z$ $1.733024438$ $[1, -1, 1, -13310507, 18694648514]$ \(y^2+xy+y=x^3-x^2-13310507x+18694648514\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[(1972, 9601), (2157, 2941)]$
364815.k2 364815.k \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\Z/2\Z$ $1.733024438$ $[1, -1, 1, -832382, 291909764]$ \(y^2+xy+y=x^3-x^2-832382x+291909764\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(322, 7401), (447, 2776)]$
364815.l1 364815.l \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -17176457, -22987152944]$ \(y^2+xy+y=x^3-x^2-17176457x-22987152944\) 2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? $[ ]$
364815.l2 364815.l \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 32236918, -130866433244]$ \(y^2+xy+y=x^3-x^2+32236918x-130866433244\) 2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? $[ ]$
364815.m1 364815.m \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 853753, -1902663606]$ \(y^2+xy+y=x^3-x^2+853753x-1902663606\) 134.2.0.? $[ ]$
364815.n1 364815.n \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $2.635776362$ $[1, -1, 1, -360482, -79920574]$ \(y^2+xy+y=x^3-x^2-360482x-79920574\) 2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? $[(-351, 1984)]$
364815.n2 364815.n \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $1.317888181$ $[1, -1, 1, -61007, 4172006]$ \(y^2+xy+y=x^3-x^2-61007x+4172006\) 2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? $[(234, 1516)]$
364815.o1 364815.o \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $1.094175011$ $[1, -1, 1, -131792, 18433066]$ \(y^2+xy+y=x^3-x^2-131792x+18433066\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(124, 1934)]$
364815.o2 364815.o \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $2.188350022$ $[1, -1, 1, -10187, 143674]$ \(y^2+xy+y=x^3-x^2-10187x+143674\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[(14, 53)]$
364815.p1 364815.p \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -44672, 3727694]$ \(y^2+xy+y=x^3-x^2-44672x+3727694\) 134.2.0.? $[ ]$
364815.q1 364815.q \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $1.161679631$ $[0, 0, 1, 132, -36]$ \(y^2+y=x^3+132x-36\) 134.2.0.? $[(14, 67)]$
364815.r1 364815.r \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $2$ $\mathsf{trivial}$ $2.277565471$ $[0, 0, 1, -2178, 80858]$ \(y^2+y=x^3-2178x+80858\) 134.2.0.? $[(-44, 302), (198, 2722)]$
364815.s1 364815.s \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $5.300431846$ $[0, 0, 1, 15972, 47583]$ \(y^2+y=x^3+15972x+47583\) 134.2.0.? $[(1049/2, 37751/2)]$
364815.t1 364815.t \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $1.486241582$ $[0, 0, 1, -3268452, -2512116423]$ \(y^2+y=x^3-3268452x-2512116423\) 3.4.0.a.1, 33.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 4422.16.0.? $[(16313/2, 1824071/2)]$
364815.t2 364815.t \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $4.458724748$ $[0, 0, 1, 259908, 7750080]$ \(y^2+y=x^3+259908x+7750080\) 3.4.0.a.1, 33.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 4422.16.0.? $[(1265/2, 88205/2)]$
364815.u1 364815.u \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -3649602, 8325608310]$ \(y^2+y=x^3-3649602x+8325608310\) 134.2.0.? $[ ]$
364815.v1 364815.v \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -30162, -6255153]$ \(y^2+y=x^3-30162x-6255153\) 134.2.0.? $[ ]$
364815.w1 364815.w \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $5.951687994$ $[1, -1, 0, -2580, -60175]$ \(y^2+xy=x^3-x^2-2580x-60175\) 4020.2.0.? $[(263/2, 1547/2)]$
364815.x1 364815.x \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $39.87956128$ $[1, -1, 0, -119794560, -504635715325]$ \(y^2+xy=x^3-x^2-119794560x-504635715325\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[(8632736772050764519/6198242, 25306824379139681785175994647/6198242)]$
364815.x2 364815.x \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $19.93978064$ $[1, -1, 0, -7491435, -7874072200]$ \(y^2+xy=x^3-x^2-7491435x-7874072200\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(-189122588888/10753, 2467786494175888/10753)]$
364815.y1 364815.y \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $4.327127093$ $[1, -1, 0, -324000, -70857099]$ \(y^2+xy=x^3-x^2-324000x-70857099\) 2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? $[(3015/2, 81927/2)]$
364815.y2 364815.y \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $2.163563546$ $[1, -1, 0, -24525, -600264]$ \(y^2+xy=x^3-x^2-24525x-600264\) 2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? $[(300, 4206)]$
364815.z1 364815.z \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $5.190101625$ $[1, -1, 0, -324000, -65328125]$ \(y^2+xy=x^3-x^2-324000x-65328125\) 2.3.0.a.1, 20.6.0.b.1, 402.6.0.?, 4020.12.0.? $[(21750, 3195625)]$
364815.z2 364815.z \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $10.38020325$ $[1, -1, 0, 356625, -303955250]$ \(y^2+xy=x^3-x^2+356625x-303955250\) 2.3.0.a.1, 20.6.0.a.1, 804.6.0.?, 4020.12.0.? $[(347901/4, 204577915/4)]$
364815.ba1 364815.ba \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $4.121388159$ $[1, -1, 0, -1908495, 852012200]$ \(y^2+xy=x^3-x^2-1908495x+852012200\) 2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? $[(1048, 928)]$
364815.ba2 364815.ba \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $8.242776318$ $[1, -1, 0, 3581880, 4845710975]$ \(y^2+xy=x^3-x^2+3581880x+4845710975\) 2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? $[(-16507/4, 491967/4)]$
364815.bb1 364815.bb \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1186125, -496506664]$ \(y^2+xy=x^3-x^2-1186125x-496506664\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
364815.bb2 364815.bb \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -91680, -3787525]$ \(y^2+xy=x^3-x^2-91680x-3787525\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
364815.bc1 364815.bc \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $6.046978616$ $[1, -1, 0, -70989, 4093810]$ \(y^2+xy=x^3-x^2-70989x+4093810\) 2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? $[(-2851/4, 218561/4)]$
364815.bc2 364815.bc \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $3.023489308$ $[1, -1, 0, -61914, 5943295]$ \(y^2+xy=x^3-x^2-61914x+5943295\) 2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[(1334, 47249)]$
364815.bd1 364815.bd \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -369, -2700]$ \(y^2+xy=x^3-x^2-369x-2700\) 134.2.0.? $[ ]$
364815.be1 364815.be \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) $1$ $\Z/2\Z$ $2.608318956$ $[1, -1, 0, -181704, -23152365]$ \(y^2+xy=x^3-x^2-181704x-23152365\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(1959/2, 16191/2)]$
Next   displayed columns for results