Learn more

Refine search


Results (1-50 of 133 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
36414.a1 36414.a \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $2$ $\Z/2\Z$ $9.029781919$ $[1, -1, 0, -1820754, -943268396]$ \(y^2+xy=x^3-x^2-1820754x-943268396\) 2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? $[(-769, 1685), (46049, 9854273)]$
36414.a2 36414.a \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $2$ $\Z/2\Z$ $2.257445479$ $[1, -1, 0, -156114, -2746796]$ \(y^2+xy=x^3-x^2-156114x-2746796\) 2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? $[(557, 8825), (-21, 733)]$
36414.b1 36414.b \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $1.529095935$ $[1, -1, 0, -10764, 432544]$ \(y^2+xy=x^3-x^2-10764x+432544\) 28.2.0.a.1 $[(60, -28), (72, 128)]$
36414.c1 36414.c \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.970734921$ $[1, -1, 0, -48606, 4138918]$ \(y^2+xy=x^3-x^2-48606x+4138918\) 3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 2856.16.0.? $[(149, 359)]$
36414.c2 36414.c \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.912204765$ $[1, -1, 0, 42429, 17055773]$ \(y^2+xy=x^3-x^2+42429x+17055773\) 3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 2856.16.0.? $[(-713/2, 16319/2)]$
36414.d1 36414.d \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -992806956, 12041183422498]$ \(y^2+xy=x^3-x^2-992806956x+12041183422498\) 3.4.0.a.1, 9.36.0.d.2, 51.8.0-3.a.1.2, 153.72.0.?, 168.8.0.?, $\ldots$ $[ ]$
36414.d2 36414.d \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2528226, 41794053916]$ \(y^2+xy=x^3-x^2-2528226x+41794053916\) 3.12.0.a.1, 9.36.0.a.1, 51.24.0-3.a.1.1, 153.72.0.?, 168.24.0.?, $\ldots$ $[ ]$
36414.d3 36414.d \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 280854, -1546117772]$ \(y^2+xy=x^3-x^2+280854x-1546117772\) 3.4.0.a.1, 9.36.0.d.1, 51.8.0-3.a.1.1, 153.72.0.?, 168.8.0.?, $\ldots$ $[ ]$
36414.e1 36414.e \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1769601, -905700419]$ \(y^2+xy=x^3-x^2-1769601x-905700419\) 24.2.0.b.1 $[ ]$
36414.f1 36414.f \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 4715559, -1685570387]$ \(y^2+xy=x^3-x^2+4715559x-1685570387\) 24.2.0.b.1 $[ ]$
36414.g1 36414.g \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $10.03510529$ $[1, -1, 0, -3390891, -2506434427]$ \(y^2+xy=x^3-x^2-3390891x-2506434427\) 3.8.0-3.a.1.1, 24.16.0-24.d.1.7 $[(114259/2, 38424893/2)]$
36414.g2 36414.g \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/3\Z$ $3.345035097$ $[1, -1, 0, 220164, -7825104]$ \(y^2+xy=x^3-x^2+220164x-7825104\) 3.8.0-3.a.1.2, 24.16.0-24.d.1.8 $[(315, 9471)]$
36414.h1 36414.h \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -18261, -945459]$ \(y^2+xy=x^3-x^2-18261x-945459\) 3.8.0-3.a.1.1, 56.2.0.b.1, 168.16.0.? $[ ]$
36414.h2 36414.h \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, 7749, -3364389]$ \(y^2+xy=x^3-x^2+7749x-3364389\) 3.8.0-3.a.1.2, 56.2.0.b.1, 168.16.0.? $[ ]$
36414.i1 36414.i \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.064255867$ $[1, -1, 0, 736029, -291654027]$ \(y^2+xy=x^3-x^2+736029x-291654027\) 24.2.0.b.1 $[(357, 3885)]$
36414.j1 36414.j \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -35682089058, 2594328654970476]$ \(y^2+xy=x^3-x^2-35682089058x+2594328654970476\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 48.96.0-8.p.1.3, 204.12.0.?, $\ldots$ $[ ]$
36414.j2 36414.j \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -2234373498, 40374817041780]$ \(y^2+xy=x^3-x^2-2234373498x+40374817041780\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 24.96.0-8.f.1.2, 136.96.1.?, $\ldots$ $[ ]$
36414.j3 36414.j \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -761063058, 92822606071164]$ \(y^2+xy=x^3-x^2-761063058x+92822606071164\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 24.48.0-8.k.1.3, $\ldots$ $[ ]$
36414.j4 36414.j \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -235973178, -350583079500]$ \(y^2+xy=x^3-x^2-235973178x-350583079500\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 12.24.0-4.b.1.2, 24.96.0-8.i.1.8, $\ldots$ $[ ]$
36414.j5 36414.j \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -182704698, -949310141004]$ \(y^2+xy=x^3-x^2-182704698x-949310141004\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 12.12.0-4.c.1.2, 16.48.0.z.1, $\ldots$ $[ ]$
36414.j6 36414.j \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 910131462, -2758090486284]$ \(y^2+xy=x^3-x^2+910131462x-2758090486284\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.1, 16.48.0.z.2, $\ldots$ $[ ]$
36414.k1 36414.k \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.061089827$ $[1, -1, 0, -3495798, -2514876984]$ \(y^2+xy=x^3-x^2-3495798x-2514876984\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.z.2, 28.12.0.h.1, $\ldots$ $[(8427, 748389)]$
36414.k2 36414.k \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.007636228$ $[1, -1, 0, -2377368, 1397937366]$ \(y^2+xy=x^3-x^2-2377368x+1397937366\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 112.96.1.?, 204.12.0.?, $\ldots$ $[(693, 8757)]$
36414.k3 36414.k \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.015272456$ $[1, -1, 0, -270558, -19103040]$ \(y^2+xy=x^3-x^2-270558x-19103040\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 56.96.1.bp.2, 204.24.0.?, $\ldots$ $[(-191, 5153)]$
36414.k4 36414.k \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.030544913$ $[1, -1, 0, -218538, -39234780]$ \(y^2+xy=x^3-x^2-218538x-39234780\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 28.24.0.c.1, 56.96.1.by.1, $\ldots$ $[(624, 7878)]$
36414.k5 36414.k \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.061089827$ $[1, -1, 0, -10458, -906444]$ \(y^2+xy=x^3-x^2-10458x-906444\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 14.6.0.b.1, 16.48.0.z.1, $\ldots$ $[(52141/5, 11758674/5)]$
36414.k6 36414.k \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.030544913$ $[1, -1, 0, 1003932, -148336326]$ \(y^2+xy=x^3-x^2+1003932x-148336326\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 56.48.0.bc.1, $\ldots$ $[(1951, 95117)]$
36414.l1 36414.l \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.902425896$ $[1, -1, 0, -13210533, -18477825219]$ \(y^2+xy=x^3-x^2-13210533x-18477825219\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ $[(145989/5, 39846303/5)]$
36414.l2 36414.l \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.225606474$ $[1, -1, 0, -1766133, 477971469]$ \(y^2+xy=x^3-x^2-1766133x+477971469\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 168.24.0.?, 204.12.0.?, $\ldots$ $[(-1245, 27933)]$
36414.l3 36414.l \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.451212948$ $[1, -1, 0, -829773, -285536475]$ \(y^2+xy=x^3-x^2-829773x-285536475\) 2.6.0.a.1, 8.12.0.a.1, 84.12.0.?, 168.24.0.?, 204.12.0.?, $\ldots$ $[(5250, 371595)]$
36414.l4 36414.l \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.225606474$ $[1, -1, 0, 2547, -13367835]$ \(y^2+xy=x^3-x^2+2547x-13367835\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ $[(1509, 57768)]$
36414.m1 36414.m \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.889255393$ $[1, -1, 0, 660, 4382]$ \(y^2+xy=x^3-x^2+660x+4382\) 24.2.0.b.1 $[(73, 625)]$
36414.n1 36414.n \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.358045128$ $[1, -1, 0, 45030, -527276]$ \(y^2+xy=x^3-x^2+45030x-527276\) 2856.2.0.? $[(47, 1277)]$
36414.o1 36414.o \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -105, 557]$ \(y^2+xy=x^3-x^2-105x+557\) 56.2.0.b.1 $[ ]$
36414.p1 36414.p \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.707719496$ $[1, -1, 0, -236745, 44552389]$ \(y^2+xy=x^3-x^2-236745x+44552389\) 24.2.0.b.1 $[(-361, 9284)]$
36414.q1 36414.q \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.794432242$ $[1, -1, 0, -15660, -3590098]$ \(y^2+xy=x^3-x^2-15660x-3590098\) 24.2.0.b.1 $[(209, 1390)]$
36414.r1 36414.r \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.282720307$ $[1, -1, 0, -17872545, 29093256829]$ \(y^2+xy=x^3-x^2-17872545x+29093256829\) 24.2.0.b.1 $[(-3763, 209372)]$
36414.s1 36414.s \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -137040, -25447168]$ \(y^2+xy=x^3-x^2-137040x-25447168\) 2856.2.0.? $[ ]$
36414.t1 36414.t \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2200245, -2030477131]$ \(y^2+xy=x^3-x^2-2200245x-2030477131\) 24.2.0.b.1 $[ ]$
36414.u1 36414.u \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -15660, -33490616]$ \(y^2+xy=x^3-x^2-15660x-33490616\) 24.2.0.b.1 $[ ]$
36414.v1 36414.v \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.334237631$ $[1, -1, 0, -502047, 115653325]$ \(y^2+xy=x^3-x^2-502047x+115653325\) 28.2.0.a.1 $[(8862, 827185)]$
36414.w1 36414.w \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1975947, -1009423675]$ \(y^2+xy=x^3-x^2-1975947x-1009423675\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ $[ ]$
36414.w2 36414.w \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1561413, -4230543691]$ \(y^2+xy=x^3-x^2+1561413x-4230543691\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ $[ ]$
36414.x1 36414.x \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.582024863$ $[1, -1, 0, -72882, -890838]$ \(y^2+xy=x^3-x^2-72882x-890838\) 2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? $[(-191, 2552)]$
36414.x2 36414.x \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.791012431$ $[1, -1, 0, -46872, 3900204]$ \(y^2+xy=x^3-x^2-46872x+3900204\) 2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? $[(115, 87)]$
36414.y1 36414.y \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.085489723$ $[1, -1, 0, -6837, -203851]$ \(y^2+xy=x^3-x^2-6837x-203851\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ $[(-55, 87)]$
36414.y2 36414.y \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.542744861$ $[1, -1, 0, 5403, -862363]$ \(y^2+xy=x^3-x^2+5403x-862363\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ $[(334, 6007)]$
36414.z1 36414.z \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.151902360$ $[1, -1, 0, -1737, 23949]$ \(y^2+xy=x^3-x^2-1737x+23949\) 28.2.0.a.1 $[(130, 1343)]$
36414.ba1 36414.ba \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $1.527934630$ $[1, -1, 0, -54, -6804]$ \(y^2+xy=x^3-x^2-54x-6804\) 24.2.0.b.1 $[(45, 261), (99/2, 549/2)]$
36414.bb1 36414.bb \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -635870859, -9978277627963]$ \(y^2+xy=x^3-x^2-635870859x-9978277627963\) 24.2.0.b.1 $[ ]$
Next   displayed columns for results