Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
36414.a1 |
36414z2 |
36414.a |
36414z |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{7} \cdot 3^{6} \cdot 7^{4} \cdot 17^{8} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$136$ |
$12$ |
$0$ |
$9.029781919$ |
$1$ |
|
$8$ |
$1548288$ |
$2.371357$ |
$37936442980801/88817792$ |
$0.95838$ |
$5.22321$ |
$[1, -1, 0, -1820754, -943268396]$ |
\(y^2+xy=x^3-x^2-1820754x-943268396\) |
2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? |
$[(-769, 1685), (46049, 9854273)]$ |
36414.a2 |
36414z1 |
36414.a |
36414z |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{6} \cdot 7^{2} \cdot 17^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$136$ |
$12$ |
$0$ |
$2.257445479$ |
$1$ |
|
$15$ |
$774144$ |
$2.024784$ |
$23912763841/13647872$ |
$0.98171$ |
$4.52156$ |
$[1, -1, 0, -156114, -2746796]$ |
\(y^2+xy=x^3-x^2-156114x-2746796\) |
2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? |
$[(557, 8825), (-21, 733)]$ |
36414.b1 |
36414y1 |
36414.b |
36414y |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1.529095935$ |
$1$ |
|
$10$ |
$60480$ |
$0.813345$ |
$654699641761/112$ |
$0.96142$ |
$3.75765$ |
$[1, -1, 0, -10764, 432544]$ |
\(y^2+xy=x^3-x^2-10764x+432544\) |
28.2.0.a.1 |
$[(60, -28), (72, 128)]$ |
36414.c1 |
36414f1 |
36414.c |
36414f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{3} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$0.970734921$ |
$1$ |
|
$4$ |
$138240$ |
$1.415619$ |
$-19486825371/11662$ |
$0.90778$ |
$4.18836$ |
$[1, -1, 0, -48606, 4138918]$ |
\(y^2+xy=x^3-x^2-48606x+4138918\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 2856.16.0.? |
$[(149, 359)]$ |
36414.c2 |
36414f2 |
36414.c |
36414f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 7 \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$2.912204765$ |
$1$ |
|
$0$ |
$414720$ |
$1.964926$ |
$17779581/275128$ |
$0.91363$ |
$4.45870$ |
$[1, -1, 0, 42429, 17055773]$ |
\(y^2+xy=x^3-x^2+42429x+17055773\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 2856.16.0.? |
$[(-713/2, 16319/2)]$ |
36414.d1 |
36414x3 |
36414.d |
36414x |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{3} \cdot 17^{15} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.5 |
3B |
$8568$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$22394880$ |
$3.810024$ |
$-6150311179917589675873/244053849830826$ |
$1.03702$ |
$7.02312$ |
$[1, -1, 0, -992806956, 12041183422498]$ |
\(y^2+xy=x^3-x^2-992806956x+12041183422498\) |
3.4.0.a.1, 9.36.0.d.2, 51.8.0-3.a.1.2, 153.72.0.?, 168.8.0.?, $\ldots$ |
$[ ]$ |
36414.d2 |
36414x2 |
36414.d |
36414x |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 7^{9} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.1 |
3Cs |
$8568$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$7464960$ |
$3.260715$ |
$-101566487155393/42823570577256$ |
$1.05717$ |
$5.94467$ |
$[1, -1, 0, -2528226, 41794053916]$ |
\(y^2+xy=x^3-x^2-2528226x+41794053916\) |
3.12.0.a.1, 9.36.0.a.1, 51.24.0-3.a.1.1, 153.72.0.?, 168.24.0.?, $\ldots$ |
$[ ]$ |
36414.d3 |
36414x1 |
36414.d |
36414x |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{15} \cdot 7^{3} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.4 |
3B |
$8568$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.711411$ |
$139233463487/58763045376$ |
$1.03208$ |
$5.31683$ |
$[1, -1, 0, 280854, -1546117772]$ |
\(y^2+xy=x^3-x^2+280854x-1546117772\) |
3.4.0.a.1, 9.36.0.d.1, 51.8.0-3.a.1.1, 153.72.0.?, 168.8.0.?, $\ldots$ |
$[ ]$ |
36414.e1 |
36414h1 |
36414.e |
36414h |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 7^{4} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1096704$ |
$2.253693$ |
$-3253829409099/307328$ |
$1.11142$ |
$5.21509$ |
$[1, -1, 0, -1769601, -905700419]$ |
\(y^2+xy=x^3-x^2-1769601x-905700419\) |
24.2.0.b.1 |
$[ ]$ |
36414.f1 |
36414bo1 |
36414.f |
36414bo |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3329280$ |
$2.890774$ |
$2280364702703/1560674304$ |
$1.00470$ |
$5.49503$ |
$[1, -1, 0, 4715559, -1685570387]$ |
\(y^2+xy=x^3-x^2+4715559x-1685570387\) |
24.2.0.b.1 |
$[ ]$ |
36414.g1 |
36414o2 |
36414.g |
36414o |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{15} \cdot 3^{9} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$24$ |
$16$ |
$0$ |
$10.03510529$ |
$1$ |
|
$0$ |
$1762560$ |
$2.663807$ |
$-31403829411/1605632$ |
$0.95418$ |
$5.40890$ |
$[1, -1, 0, -3390891, -2506434427]$ |
\(y^2+xy=x^3-x^2-3390891x-2506434427\) |
3.8.0-3.a.1.1, 24.16.0-24.d.1.7 |
$[(114259/2, 38424893/2)]$ |
36414.g2 |
36414o1 |
36414.g |
36414o |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{3} \cdot 7^{6} \cdot 17^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$24$ |
$16$ |
$0$ |
$3.345035097$ |
$1$ |
|
$6$ |
$587520$ |
$2.114502$ |
$6266230821/3764768$ |
$1.01861$ |
$4.61976$ |
$[1, -1, 0, 220164, -7825104]$ |
\(y^2+xy=x^3-x^2+220164x-7825104\) |
3.8.0-3.a.1.2, 24.16.0-24.d.1.8 |
$[(315, 9471)]$ |
36414.h1 |
36414bn1 |
36414.h |
36414bn |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 7^{3} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$90720$ |
$1.141043$ |
$-11060825617/2744$ |
$0.96546$ |
$3.90867$ |
$[1, -1, 0, -18261, -945459]$ |
\(y^2+xy=x^3-x^2-18261x-945459\) |
3.8.0-3.a.1.1, 56.2.0.b.1, 168.16.0.? |
$[ ]$ |
36414.h2 |
36414bn2 |
36414.h |
36414bn |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 7^{9} \cdot 17^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$272160$ |
$1.690350$ |
$845095823/80707214$ |
$1.05336$ |
$4.14936$ |
$[1, -1, 0, 7749, -3364389]$ |
\(y^2+xy=x^3-x^2+7749x-3364389\) |
3.8.0-3.a.1.2, 56.2.0.b.1, 168.16.0.? |
$[ ]$ |
36414.i1 |
36414bk1 |
36414.i |
36414bk |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{9} \cdot 7^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$4.064255867$ |
$1$ |
|
$2$ |
$1175040$ |
$2.483707$ |
$30004847/42336$ |
$0.94258$ |
$4.99910$ |
$[1, -1, 0, 736029, -291654027]$ |
\(y^2+xy=x^3-x^2+736029x-291654027\) |
24.2.0.b.1 |
$[(357, 3885)]$ |
36414.j1 |
36414t6 |
36414.j |
36414t |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{14} \cdot 7^{2} \cdot 17^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.217 |
2B |
$816$ |
$192$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$70778880$ |
$4.545044$ |
$285531136548675601769470657/17941034271597192$ |
$1.06247$ |
$8.04624$ |
$[1, -1, 0, -35682089058, 2594328654970476]$ |
\(y^2+xy=x^3-x^2-35682089058x+2594328654970476\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 48.96.0-8.p.1.3, 204.12.0.?, $\ldots$ |
$[ ]$ |
36414.j2 |
36414t4 |
36414.j |
36414t |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{22} \cdot 7^{4} \cdot 17^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.96 |
2Cs |
$408$ |
$192$ |
$1$ |
$1$ |
$9$ |
$3$ |
$2$ |
$35389440$ |
$4.198471$ |
$70108386184777836280897/552468975892674624$ |
$1.07814$ |
$7.25482$ |
$[1, -1, 0, -2234373498, 40374817041780]$ |
\(y^2+xy=x^3-x^2-2234373498x+40374817041780\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 24.96.0-8.f.1.2, 136.96.1.?, $\ldots$ |
$[ ]$ |
36414.j3 |
36414t5 |
36414.j |
36414t |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{38} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.204 |
2B |
$816$ |
$192$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$70778880$ |
$4.545044$ |
$-2770540998624539614657/209924951154647363208$ |
$1.08173$ |
$7.41205$ |
$[1, -1, 0, -761063058, 92822606071164]$ |
\(y^2+xy=x^3-x^2-761063058x+92822606071164\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 24.48.0-8.k.1.3, $\ldots$ |
$[ ]$ |
36414.j4 |
36414t2 |
36414.j |
36414t |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{14} \cdot 7^{8} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.97 |
2Cs |
$408$ |
$192$ |
$1$ |
$1$ |
$9$ |
$3$ |
$2$ |
$17694720$ |
$3.851894$ |
$82582985847542515777/44772582831427584$ |
$1.09721$ |
$6.61270$ |
$[1, -1, 0, -235973178, -350583079500]$ |
\(y^2+xy=x^3-x^2-235973178x-350583079500\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 12.24.0-4.b.1.2, 24.96.0-8.i.1.8, $\ldots$ |
$[ ]$ |
36414.j5 |
36414t1 |
36414.j |
36414t |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{24} \cdot 3^{10} \cdot 7^{4} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.102 |
2B |
$816$ |
$192$ |
$1$ |
$1$ |
$9$ |
$3$ |
$1$ |
$8847360$ |
$3.505322$ |
$38331145780597164097/55468445663232$ |
$1.02142$ |
$6.53962$ |
$[1, -1, 0, -182704698, -949310141004]$ |
\(y^2+xy=x^3-x^2-182704698x-949310141004\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 12.12.0-4.c.1.2, 16.48.0.z.1, $\ldots$ |
$[ ]$ |
36414.j6 |
36414t3 |
36414.j |
36414t |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{10} \cdot 7^{16} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.120 |
2B |
$816$ |
$192$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$35389440$ |
$4.198471$ |
$4738217997934888496063/2928751705237796928$ |
$1.06742$ |
$6.99828$ |
$[1, -1, 0, 910131462, -2758090486284]$ |
\(y^2+xy=x^3-x^2+910131462x-2758090486284\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.1, 16.48.0.z.2, $\ldots$ |
$[ ]$ |
36414.k1 |
36414bi4 |
36414.k |
36414bi |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{8} \cdot 7 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.120 |
2B |
$5712$ |
$192$ |
$1$ |
$8.061089827$ |
$1$ |
|
$2$ |
$655360$ |
$2.155014$ |
$268498407453697/252$ |
$1.05727$ |
$5.40954$ |
$[1, -1, 0, -3495798, -2514876984]$ |
\(y^2+xy=x^3-x^2-3495798x-2514876984\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.z.2, 28.12.0.h.1, $\ldots$ |
$[(8427, 748389)]$ |
36414.k2 |
36414bi6 |
36414.k |
36414bi |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2 \cdot 3^{10} \cdot 7^{8} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.217 |
2B |
$5712$ |
$192$ |
$1$ |
$1.007636228$ |
$1$ |
|
$6$ |
$1310720$ |
$2.501587$ |
$84448510979617/933897762$ |
$1.05309$ |
$5.29941$ |
$[1, -1, 0, -2377368, 1397937366]$ |
\(y^2+xy=x^3-x^2-2377368x+1397937366\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 112.96.1.?, 204.12.0.?, $\ldots$ |
$[(693, 8757)]$ |
36414.k3 |
36414bi3 |
36414.k |
36414bi |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{14} \cdot 7^{4} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.96 |
2Cs |
$2856$ |
$192$ |
$1$ |
$2.015272456$ |
$1$ |
|
$8$ |
$655360$ |
$2.155014$ |
$124475734657/63011844$ |
$1.06499$ |
$4.67863$ |
$[1, -1, 0, -270558, -19103040]$ |
\(y^2+xy=x^3-x^2-270558x-19103040\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 56.96.1.bp.2, 204.24.0.?, $\ldots$ |
$[(-191, 5153)]$ |
36414.k4 |
36414bi2 |
36414.k |
36414bi |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.97 |
2Cs |
$2856$ |
$192$ |
$1$ |
$4.030544913$ |
$1$ |
|
$6$ |
$327680$ |
$1.808441$ |
$65597103937/63504$ |
$1.01692$ |
$4.61764$ |
$[1, -1, 0, -218538, -39234780]$ |
\(y^2+xy=x^3-x^2-218538x-39234780\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 28.24.0.c.1, 56.96.1.by.1, $\ldots$ |
$[(624, 7878)]$ |
36414.k5 |
36414bi1 |
36414.k |
36414bi |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 7 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.102 |
2B |
$5712$ |
$192$ |
$1$ |
$8.061089827$ |
$1$ |
|
$1$ |
$163840$ |
$1.461866$ |
$-7189057/16128$ |
$0.98224$ |
$3.90028$ |
$[1, -1, 0, -10458, -906444]$ |
\(y^2+xy=x^3-x^2-10458x-906444\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 14.6.0.b.1, 16.48.0.z.1, $\ldots$ |
$[(52141/5, 11758674/5)]$ |
36414.k6 |
36414bi5 |
36414.k |
36414bi |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{22} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.204 |
2B |
$5712$ |
$192$ |
$1$ |
$4.030544913$ |
$1$ |
|
$2$ |
$1310720$ |
$2.501587$ |
$6359387729183/4218578658$ |
$1.08314$ |
$5.05316$ |
$[1, -1, 0, 1003932, -148336326]$ |
\(y^2+xy=x^3-x^2+1003932x-148336326\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 56.48.0.bc.1, $\ldots$ |
$[(1951, 95117)]$ |
36414.l1 |
36414bh4 |
36414.l |
36414bh |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{14} \cdot 7 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$2856$ |
$48$ |
$0$ |
$8.902425896$ |
$1$ |
|
$0$ |
$1769472$ |
$2.612461$ |
$14489843500598257/6246072$ |
$0.99019$ |
$5.78929$ |
$[1, -1, 0, -13210533, -18477825219]$ |
\(y^2+xy=x^3-x^2-13210533x-18477825219\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ |
$[(145989/5, 39846303/5)]$ |
36414.l2 |
36414bh3 |
36414.l |
36414bh |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{8} \cdot 7^{4} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$2856$ |
$48$ |
$0$ |
$2.225606474$ |
$1$ |
|
$2$ |
$1769472$ |
$2.612461$ |
$34623662831857/14438442312$ |
$0.97689$ |
$5.21451$ |
$[1, -1, 0, -1766133, 477971469]$ |
\(y^2+xy=x^3-x^2-1766133x+477971469\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 168.24.0.?, 204.12.0.?, $\ldots$ |
$[(-1245, 27933)]$ |
36414.l3 |
36414bh2 |
36414.l |
36414bh |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{10} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$2856$ |
$48$ |
$0$ |
$4.451212948$ |
$1$ |
|
$4$ |
$884736$ |
$2.265888$ |
$3590714269297/73410624$ |
$0.94339$ |
$4.99874$ |
$[1, -1, 0, -829773, -285536475]$ |
\(y^2+xy=x^3-x^2-829773x-285536475\) |
2.6.0.a.1, 8.12.0.a.1, 84.12.0.?, 168.24.0.?, 204.12.0.?, $\ldots$ |
$[(5250, 371595)]$ |
36414.l4 |
36414bh1 |
36414.l |
36414bh |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{8} \cdot 7 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$2856$ |
$48$ |
$0$ |
$2.225606474$ |
$1$ |
|
$3$ |
$442368$ |
$1.919315$ |
$103823/4386816$ |
$1.04374$ |
$4.41217$ |
$[1, -1, 0, 2547, -13367835]$ |
\(y^2+xy=x^3-x^2+2547x-13367835\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 84.12.0.?, 168.24.0.?, $\ldots$ |
$[(1509, 57768)]$ |
36414.m1 |
36414d1 |
36414.m |
36414d |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{9} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.889255393$ |
$1$ |
|
$4$ |
$27648$ |
$0.690130$ |
$5584653/4802$ |
$0.87951$ |
$2.96014$ |
$[1, -1, 0, 660, 4382]$ |
\(y^2+xy=x^3-x^2+660x+4382\) |
24.2.0.b.1 |
$[(73, 625)]$ |
36414.n1 |
36414c1 |
36414.n |
36414c |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{3} \cdot 7^{5} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.358045128$ |
$1$ |
|
$2$ |
$230400$ |
$1.716335$ |
$15494117157/9143008$ |
$0.99372$ |
$4.16643$ |
$[1, -1, 0, 45030, -527276]$ |
\(y^2+xy=x^3-x^2+45030x-527276\) |
2856.2.0.? |
$[(47, 1277)]$ |
36414.o1 |
36414r1 |
36414.o |
36414r |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{6} \cdot 7 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10080$ |
$0.182808$ |
$-610929/224$ |
$0.83608$ |
$2.48237$ |
$[1, -1, 0, -105, 557]$ |
\(y^2+xy=x^3-x^2-105x+557\) |
56.2.0.b.1 |
$[ ]$ |
36414.p1 |
36414bb1 |
36414.p |
36414bb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{7} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.707719496$ |
$1$ |
|
$4$ |
$235008$ |
$1.883394$ |
$-288568081/1176$ |
$0.89132$ |
$4.64117$ |
$[1, -1, 0, -236745, 44552389]$ |
\(y^2+xy=x^3-x^2-236745x+44552389\) |
24.2.0.b.1 |
$[(-361, 9284)]$ |
36414.q1 |
36414b1 |
36414.q |
36414b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$4.794432242$ |
$1$ |
|
$2$ |
$274176$ |
$1.699492$ |
$-7803/98$ |
$1.33755$ |
$4.16204$ |
$[1, -1, 0, -15660, -3590098]$ |
\(y^2+xy=x^3-x^2-15660x-3590098\) |
24.2.0.b.1 |
$[(209, 1390)]$ |
36414.r1 |
36414a1 |
36414.r |
36414a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{43} \cdot 3^{3} \cdot 7^{4} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$6.282720307$ |
$1$ |
|
$2$ |
$2774016$ |
$2.864277$ |
$-80913561311713458589803/21119419346321408$ |
$1.08121$ |
$5.87566$ |
$[1, -1, 0, -17872545, 29093256829]$ |
\(y^2+xy=x^3-x^2-17872545x+29093256829\) |
24.2.0.b.1 |
$[(-3763, 209372)]$ |
36414.s1 |
36414j1 |
36414.s |
36414j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{9} \cdot 7 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$304128$ |
$1.982687$ |
$-599077107/243712$ |
$0.93124$ |
$4.53503$ |
$[1, -1, 0, -137040, -25447168]$ |
\(y^2+xy=x^3-x^2-137040x-25447168\) |
2856.2.0.? |
$[ ]$ |
36414.t1 |
36414i1 |
36414.t |
36414i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{25} \cdot 3^{9} \cdot 7^{8} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.733982$ |
$-207084606048940707/193434623148032$ |
$1.16601$ |
$5.36878$ |
$[1, -1, 0, -2200245, -2030477131]$ |
\(y^2+xy=x^3-x^2-2200245x-2030477131\) |
24.2.0.b.1 |
$[ ]$ |
36414.u1 |
36414bm1 |
36414.u |
36414bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$587520$ |
$2.072483$ |
$-83521/95256$ |
$1.18021$ |
$4.58710$ |
$[1, -1, 0, -15660, -33490616]$ |
\(y^2+xy=x^3-x^2-15660x-33490616\) |
24.2.0.b.1 |
$[ ]$ |
36414.v1 |
36414ba1 |
36414.v |
36414ba |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{16} \cdot 3^{6} \cdot 7 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$6.334237631$ |
$1$ |
|
$2$ |
$587520$ |
$2.245686$ |
$2751936625/458752$ |
$0.92219$ |
$4.85522$ |
$[1, -1, 0, -502047, 115653325]$ |
\(y^2+xy=x^3-x^2-502047x+115653325\) |
28.2.0.a.1 |
$[(8862, 827185)]$ |
36414.w1 |
36414p1 |
36414.w |
36414p |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{4} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.35 |
2B |
$1904$ |
$192$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$1114112$ |
$2.536377$ |
$9869198625/614656$ |
$1.04980$ |
$5.24658$ |
$[1, -1, 0, -1975947, -1009423675]$ |
\(y^2+xy=x^3-x^2-1975947x-1009423675\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ |
$[ ]$ |
36414.w2 |
36414p2 |
36414.w |
36414p |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 7^{8} \cdot 17^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.118 |
2B |
$1904$ |
$192$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$2228224$ |
$2.882950$ |
$4869777375/92236816$ |
$1.12615$ |
$5.50850$ |
$[1, -1, 0, 1561413, -4230543691]$ |
\(y^2+xy=x^3-x^2+1561413x-4230543691\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ |
$[ ]$ |
36414.x1 |
36414be2 |
36414.x |
36414be |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2 \cdot 3^{6} \cdot 7^{4} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$136$ |
$12$ |
$0$ |
$1.582024863$ |
$1$ |
|
$6$ |
$221184$ |
$1.834309$ |
$2433138625/1387778$ |
$0.96221$ |
$4.30398$ |
$[1, -1, 0, -72882, -890838]$ |
\(y^2+xy=x^3-x^2-72882x-890838\) |
2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? |
$[(-191, 2552)]$ |
36414.x2 |
36414be1 |
36414.x |
36414be |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$136$ |
$12$ |
$0$ |
$0.791012431$ |
$1$ |
|
$9$ |
$110592$ |
$1.487736$ |
$647214625/3332$ |
$0.86431$ |
$4.17789$ |
$[1, -1, 0, -46872, 3900204]$ |
\(y^2+xy=x^3-x^2-46872x+3900204\) |
2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? |
$[(115, 87)]$ |
36414.y1 |
36414bd1 |
36414.y |
36414bd |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{4} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.35 |
2B |
$1904$ |
$192$ |
$9$ |
$1.085489723$ |
$1$ |
|
$7$ |
$65536$ |
$1.119770$ |
$9869198625/614656$ |
$1.04980$ |
$3.62802$ |
$[1, -1, 0, -6837, -203851]$ |
\(y^2+xy=x^3-x^2-6837x-203851\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ |
$[(-55, 87)]$ |
36414.y2 |
36414bd2 |
36414.y |
36414bd |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 7^{8} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.118 |
2B |
$1904$ |
$192$ |
$9$ |
$0.542744861$ |
$1$ |
|
$8$ |
$131072$ |
$1.466343$ |
$4869777375/92236816$ |
$1.12615$ |
$3.88994$ |
$[1, -1, 0, 5403, -862363]$ |
\(y^2+xy=x^3-x^2+5403x-862363\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ |
$[(334, 6007)]$ |
36414.z1 |
36414bf1 |
36414.z |
36414bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{16} \cdot 3^{6} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$2.151902360$ |
$1$ |
|
$2$ |
$34560$ |
$0.829081$ |
$2751936625/458752$ |
$0.92219$ |
$3.23666$ |
$[1, -1, 0, -1737, 23949]$ |
\(y^2+xy=x^3-x^2-1737x+23949\) |
28.2.0.a.1 |
$[(130, 1343)]$ |
36414.ba1 |
36414q1 |
36414.ba |
36414q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.527934630$ |
$1$ |
|
$10$ |
$34560$ |
$0.655876$ |
$-83521/95256$ |
$1.18021$ |
$2.96853$ |
$[1, -1, 0, -54, -6804]$ |
\(y^2+xy=x^3-x^2-54x-6804\) |
24.2.0.b.1 |
$[(45, 261), (99/2, 549/2)]$ |
36414.bb1 |
36414g1 |
36414.bb |
36414g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{25} \cdot 3^{9} \cdot 7^{8} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$23500800$ |
$4.150589$ |
$-207084606048940707/193434623148032$ |
$1.16601$ |
$6.98734$ |
$[1, -1, 0, -635870859, -9978277627963]$ |
\(y^2+xy=x^3-x^2-635870859x-9978277627963\) |
24.2.0.b.1 |
$[ ]$ |