Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 135 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
36400.a1 36400.a \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -13075, -584750]$ \(y^2=x^3-13075x-584750\) 728.2.0.? $[ ]$
36400.b1 36400.b \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.085041073$ $[0, 0, 0, 725, 33850]$ \(y^2=x^3+725x+33850\) 8.2.0.a.1 $[(-15, 140), (-1, 182)]$
36400.c1 36400.c \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.221530735$ $[0, 0, 0, -4000, 47500]$ \(y^2=x^3-4000x+47500\) 26.2.0.a.1 $[(-50, 350)]$
36400.d1 36400.d \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $1.796389524$ $[0, 1, 0, -6648, -61292]$ \(y^2=x^3+x^2-6648x-61292\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(92, 338), (183, 2210)]$
36400.d2 36400.d \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $0.449097381$ $[0, 1, 0, -3848, 89908]$ \(y^2=x^3+x^2-3848x+89908\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(52, 182), (-26, 416)]$
36400.e1 36400.e \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $15.22924060$ $[0, 1, 0, -299208, -63094412]$ \(y^2=x^3+x^2-299208x-63094412\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(-316, 26), (6183, 484250)]$
36400.e2 36400.e \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $3.807310150$ $[0, 1, 0, -19208, -934412]$ \(y^2=x^3+x^2-19208x-934412\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(-92, 250), (-98, 128)]$
36400.f1 36400.f \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.455303636$ $[0, 1, 0, -29758, 1965963]$ \(y^2=x^3+x^2-29758x+1965963\) 14.2.0.a.1 $[(103, 65)]$
36400.g1 36400.g \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -133, -1137]$ \(y^2=x^3+x^2-133x-1137\) 182.2.0.? $[ ]$
36400.h1 36400.h \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -21208, -818412]$ \(y^2=x^3+x^2-21208x-818412\) 2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[ ]$
36400.h2 36400.h \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 58792, -5458412]$ \(y^2=x^3+x^2+58792x-5458412\) 2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[ ]$
36400.i1 36400.i \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.839089741$ $[0, 1, 0, -2250008, 1211043988]$ \(y^2=x^3+x^2-2250008x+1211043988\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(438, 17600)]$
36400.i2 36400.i \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $5.678179482$ $[0, 1, 0, -458008, -97116012]$ \(y^2=x^3+x^2-458008x-97116012\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(1172, 31262)]$
36400.j1 36400.j \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.277878408$ $[0, 1, 0, -33, -6437]$ \(y^2=x^3+x^2-33x-6437\) 182.2.0.? $[(22, 63)]$
36400.k1 36400.k \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.930328402$ $[0, 1, 0, -8, 163]$ \(y^2=x^3+x^2-8x+163\) 14.2.0.a.1 $[(-3, 13)]$
36400.l1 36400.l \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.067248373$ $[0, 1, 0, -5867408, 5468327188]$ \(y^2=x^3+x^2-5867408x+5468327188\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.a.1, 60.24.0-6.a.1.2, $\ldots$ $[(1468, 4550)]$
36400.l2 36400.l \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.533624186$ $[0, 1, 0, -379408, 79111188]$ \(y^2=x^3+x^2-379408x+79111188\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.d.1, 60.24.0-6.a.1.2, $\ldots$ $[(-212, 12250)]$
36400.l3 36400.l \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $3.201745119$ $[0, 1, 0, -121408, -3892812]$ \(y^2=x^3+x^2-121408x-3892812\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.a.1, 60.24.0-6.a.1.4, $\ldots$ $[(388, 2750)]$
36400.l4 36400.l \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.600872559$ $[0, 1, 0, -93408, -11004812]$ \(y^2=x^3+x^2-93408x-11004812\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.d.1, 60.24.0-6.a.1.4, $\ldots$ $[(-172, 50)]$
36400.m1 36400.m \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $5.385096474$ $[0, 1, 0, -211618408, 1184255755188]$ \(y^2=x^3+x^2-211618408x+1184255755188\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ $[(11868, 586950)]$
36400.m2 36400.m \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.692548237$ $[0, 1, 0, -211590408, 1184584979188]$ \(y^2=x^3+x^2-211590408x+1184584979188\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ $[(48142/3, 12250000/3)]$
36400.m3 36400.m \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.795032158$ $[0, 1, 0, -8142408, -7025244812]$ \(y^2=x^3+x^2-8142408x-7025244812\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 56.6.0.a.1, 60.72.0-6.a.1.1, $\ldots$ $[(-1612, 43750)]$
36400.m4 36400.m \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $5.385096474$ $[0, 1, 0, -7646408, -8140860812]$ \(y^2=x^3+x^2-7646408x-8140860812\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ $[(6268, 436150)]$
36400.m5 36400.m \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.897516079$ $[0, 1, 0, -2654408, 1568963188]$ \(y^2=x^3+x^2-2654408x+1568963188\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 56.6.0.d.1, 60.72.0-6.a.1.1, $\ldots$ $[(628, 12250)]$
36400.m6 36400.m \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.692548237$ $[0, 1, 0, -478408, -127036812]$ \(y^2=x^3+x^2-478408x-127036812\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ $[(-412, 550)]$
36400.n1 36400.n \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.487690290$ $[0, 1, 0, -1048, 12708]$ \(y^2=x^3+x^2-1048x+12708\) 2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(8, 70)]$
36400.n2 36400.n \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.243845145$ $[0, 1, 0, -848, 17908]$ \(y^2=x^3+x^2-848x+17908\) 2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(-2, 140)]$
36400.o1 36400.o \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.433072345$ $[0, 1, 0, -46933, 9629763]$ \(y^2=x^3+x^2-46933x+9629763\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 117.36.0.?, 180.24.0.?, $\ldots$ $[(134, 2401)]$
36400.o2 36400.o \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $12.89765110$ $[0, 1, 0, -2933, -62237]$ \(y^2=x^3+x^2-2933x-62237\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 117.36.0.?, 180.24.0.?, $\ldots$ $[(281734/61, 89498989/61)]$
36400.o3 36400.o \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $4.299217035$ $[0, 1, 0, 5067, -302237]$ \(y^2=x^3+x^2+5067x-302237\) 3.12.0.a.1, 60.24.0-3.a.1.1, 117.36.0.?, 182.2.0.?, 546.24.1.?, $\ldots$ $[(222, 3437)]$
36400.p1 36400.p \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -258508, 19682988]$ \(y^2=x^3+x^2-258508x+19682988\) 2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ $[ ]$
36400.p2 36400.p \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 941992, 151737988]$ \(y^2=x^3+x^2+941992x+151737988\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ $[ ]$
36400.q1 36400.q \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.770549224$ $[0, 1, 0, -638, 8143]$ \(y^2=x^3+x^2-638x+8143\) 3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.1, 420.16.0.? $[(211/3, 2197/3)]$
36400.q2 36400.q \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.590183074$ $[0, 1, 0, 62, -117]$ \(y^2=x^3+x^2+62x-117\) 3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.2, 420.16.0.? $[(19, 91)]$
36400.r1 36400.r \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -19208, 1015588]$ \(y^2=x^3+x^2-19208x+1015588\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
36400.r2 36400.r \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1708, 588]$ \(y^2=x^3+x^2-1708x+588\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
36400.s1 36400.s \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -585408, -180718688]$ \(y^2=x^3-x^2-585408x-180718688\) 728.2.0.? $[ ]$
36400.t1 36400.t \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $3.423424902$ $[0, -1, 0, -7833, -263963]$ \(y^2=x^3-x^2-7833x-263963\) 26.2.0.a.1 $[(-203/2, 133/2)]$
36400.u1 36400.u \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\mathsf{trivial}$ $1.900148390$ $[0, -1, 0, -26733, 1691137]$ \(y^2=x^3-x^2-26733x+1691137\) 3.4.0.a.1, 12.8.0-3.a.1.2, 26.2.0.a.1, 78.8.0.?, 156.16.0.? $[(133, 686), (93, 26)]$
36400.u2 36400.u \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.211127598$ $[0, -1, 0, -733, -4063]$ \(y^2=x^3-x^2-733x-4063\) 3.4.0.a.1, 12.8.0-3.a.1.1, 26.2.0.a.1, 78.8.0.?, 156.16.0.? $[(97, 910), (-7, 26)]$
36400.v1 36400.v \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -21008, 1340512]$ \(y^2=x^3-x^2-21008x+1340512\) 728.2.0.? $[ ]$
36400.w1 36400.w \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.299666734$ $[0, -1, 0, -133, -403]$ \(y^2=x^3-x^2-133x-403\) 26.2.0.a.1 $[(-4, 7)]$
36400.x1 36400.x \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.771980827$ $[0, -1, 0, -208, 2912]$ \(y^2=x^3-x^2-208x+2912\) 728.2.0.? $[(2, 50)]$
36400.y1 36400.y \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.865535346$ $[0, -1, 0, -44728, -7965328]$ \(y^2=x^3-x^2-44728x-7965328\) 8.2.0.a.1 $[(956, 28672)]$
36400.z1 36400.z \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -70208, 14758912]$ \(y^2=x^3-x^2-70208x+14758912\) 8.2.0.a.1 $[ ]$
36400.ba1 36400.ba \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.662101771$ $[0, -1, 0, -6383333, -6205375463]$ \(y^2=x^3-x^2-6383333x-6205375463\) 26.2.0.a.1 $[(-1459, 182)]$
36400.bb1 36400.bb \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -78408, -47260688]$ \(y^2=x^3-x^2-78408x-47260688\) 728.2.0.? $[ ]$
36400.bc1 36400.bc \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.188565881$ $[0, 0, 0, -23653475, -44263278750]$ \(y^2=x^3-23653475x-44263278750\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 56.24.0.bp.1, $\ldots$ $[(-2785, 3250)]$
36400.bc2 36400.bc \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $8.754263524$ $[0, 0, 0, -12517475, 16717585250]$ \(y^2=x^3-12517475x+16717585250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.2, 40.24.0-8.k.1.2, $\ldots$ $[(133730/7, 18417750/7)]$
36400.bc3 36400.bc \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.377131762$ $[0, 0, 0, -1701475, -469038750]$ \(y^2=x^3-1701475x-469038750\) 2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.1, $\ldots$ $[(2050, 68250)]$
Next   displayed columns for results