| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 36400.a1 |
36400bi1 |
36400.a |
36400bi |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{17} \cdot 5^{8} \cdot 7 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.225534$ |
$-3862503009/72800$ |
$0.85780$ |
$3.81640$ |
$[0, 0, 0, -13075, -584750]$ |
\(y^2=x^3-13075x-584750\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 36400.b1 |
36400bb1 |
36400.b |
36400bb |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 5^{4} \cdot 7^{4} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.085041073$ |
$1$ |
|
$36$ |
$70656$ |
$0.928854$ |
$32925150/405769$ |
$0.92034$ |
$3.27380$ |
$[0, 0, 0, 725, 33850]$ |
\(y^2=x^3+725x+33850\) |
8.2.0.a.1 |
$[(-15, 140), (-1, 182)]$ |
$1$ |
| 36400.c1 |
36400cx1 |
36400.c |
36400cx |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$0.221530735$ |
$1$ |
|
$6$ |
$138240$ |
$1.093218$ |
$70778880/31213$ |
$0.97825$ |
$3.47502$ |
$[0, 0, 0, -4000, 47500]$ |
\(y^2=x^3-4000x+47500\) |
26.2.0.a.1 |
$[(-50, 350)]$ |
$1$ |
| 36400.d1 |
36400cq2 |
36400.d |
36400cq |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 5^{3} \cdot 7 \cdot 13^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1.796389524$ |
$1$ |
|
$17$ |
$86016$ |
$1.231512$ |
$63473450669/33787663$ |
$0.93603$ |
$3.62015$ |
$[0, 1, 0, -6648, -61292]$ |
\(y^2=x^3+x^2-6648x-61292\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(92, 338), (183, 2210)]$ |
$1$ |
| 36400.d2 |
36400cq1 |
36400.d |
36400cq |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 5^{3} \cdot 7^{2} \cdot 13^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$0.449097381$ |
$1$ |
|
$27$ |
$43008$ |
$0.884938$ |
$12310389629/107653$ |
$0.87803$ |
$3.46398$ |
$[0, 1, 0, -3848, 89908]$ |
\(y^2=x^3+x^2-3848x+89908\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(52, 182), (-26, 416)]$ |
$1$ |
| 36400.e1 |
36400co2 |
36400.e |
36400co |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{9} \cdot 7 \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$15.22924060$ |
$1$ |
|
$9$ |
$184320$ |
$1.751049$ |
$370300910741/4732$ |
$0.90897$ |
$4.70756$ |
$[0, 1, 0, -299208, -63094412]$ |
\(y^2=x^3+x^2-299208x-63094412\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(-316, 26), (6183, 484250)]$ |
$1$ |
| 36400.e2 |
36400co1 |
36400.e |
36400co |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{16} \cdot 5^{9} \cdot 7^{2} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$3.807310150$ |
$1$ |
|
$15$ |
$92160$ |
$1.404474$ |
$97972181/10192$ |
$0.82358$ |
$3.92322$ |
$[0, 1, 0, -19208, -934412]$ |
\(y^2=x^3+x^2-19208x-934412\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(-92, 250), (-98, 128)]$ |
$1$ |
| 36400.f1 |
36400ci1 |
36400.f |
36400ci |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{4} \cdot 5^{4} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.455303636$ |
$1$ |
|
$2$ |
$53568$ |
$1.070929$ |
$-291440245830400/57967$ |
$0.95046$ |
$4.04827$ |
$[0, 1, 0, -29758, 1965963]$ |
\(y^2=x^3+x^2-29758x+1965963\) |
14.2.0.a.1 |
$[(103, 65)]$ |
$1$ |
| 36400.g1 |
36400bg1 |
36400.g |
36400bg |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$0.335117$ |
$-65536/91$ |
$0.78564$ |
$2.61997$ |
$[0, 1, 0, -133, -1137]$ |
\(y^2=x^3+x^2-133x-1137\) |
182.2.0.? |
$[ ]$ |
$1$ |
| 36400.h1 |
36400cp1 |
36400.h |
36400cp |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{18} \cdot 5^{9} \cdot 7^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$138240$ |
$1.489414$ |
$131872229/40768$ |
$0.90338$ |
$3.95151$ |
$[0, 1, 0, -21208, -818412]$ |
\(y^2=x^3+x^2-21208x-818412\) |
2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? |
$[ ]$ |
$1$ |
| 36400.h2 |
36400cp2 |
36400.h |
36400cp |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 5^{9} \cdot 7^{4} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$276480$ |
$1.835987$ |
$2809189531/3246152$ |
$0.95011$ |
$4.24276$ |
$[0, 1, 0, 58792, -5458412]$ |
\(y^2=x^3+x^2+58792x-5458412\) |
2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? |
$[ ]$ |
$1$ |
| 36400.i1 |
36400bn2 |
36400.i |
36400bn |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{19} \cdot 5^{16} \cdot 7 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$2.839089741$ |
$1$ |
|
$3$ |
$1290240$ |
$2.578384$ |
$19683218700810001/1478750000000$ |
$0.95936$ |
$5.28387$ |
$[0, 1, 0, -2250008, 1211043988]$ |
\(y^2=x^3+x^2-2250008x+1211043988\) |
2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? |
$[(438, 17600)]$ |
$1$ |
| 36400.i2 |
36400bn1 |
36400.i |
36400bn |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{26} \cdot 5^{11} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$5.678179482$ |
$1$ |
|
$3$ |
$645120$ |
$2.231812$ |
$166021325905681/32614400000$ |
$0.93577$ |
$4.82917$ |
$[0, 1, 0, -458008, -97116012]$ |
\(y^2=x^3+x^2-458008x-97116012\) |
2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? |
$[(1172, 31262)]$ |
$1$ |
| 36400.j1 |
36400r1 |
36400.j |
36400r |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$2.277878408$ |
$1$ |
|
$2$ |
$26880$ |
$0.645973$ |
$-1024/4459$ |
$0.96270$ |
$2.95738$ |
$[0, 1, 0, -33, -6437]$ |
\(y^2=x^3+x^2-33x-6437\) |
182.2.0.? |
$[(22, 63)]$ |
$1$ |
| 36400.k1 |
36400z1 |
36400.k |
36400z |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{4} \cdot 5^{4} \cdot 7 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.930328402$ |
$1$ |
|
$2$ |
$8832$ |
$0.036496$ |
$-6400/1183$ |
$0.79200$ |
$2.26083$ |
$[0, 1, 0, -8, 163]$ |
\(y^2=x^3+x^2-8x+163\) |
14.2.0.a.1 |
$[(-3, 13)]$ |
$1$ |
| 36400.l1 |
36400by4 |
36400.l |
36400by |
$4$ |
$6$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{15} \cdot 5^{12} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$1.067248373$ |
$1$ |
|
$7$ |
$995328$ |
$2.508583$ |
$349046010201856969/7245875000$ |
$0.97162$ |
$5.55766$ |
$[0, 1, 0, -5867408, 5468327188]$ |
\(y^2=x^3+x^2-5867408x+5468327188\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.a.1, 60.24.0-6.a.1.2, $\ldots$ |
$[(1468, 4550)]$ |
$1$ |
| 36400.l2 |
36400by3 |
36400.l |
36400by |
$4$ |
$6$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{18} \cdot 5^{9} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$0.533624186$ |
$1$ |
|
$9$ |
$497664$ |
$2.162010$ |
$94376601570889/12235496000$ |
$0.93000$ |
$4.77539$ |
$[0, 1, 0, -379408, 79111188]$ |
\(y^2=x^3+x^2-379408x+79111188\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.d.1, 60.24.0-6.a.1.2, $\ldots$ |
$[(-212, 12250)]$ |
$1$ |
| 36400.l3 |
36400by2 |
36400.l |
36400by |
$4$ |
$6$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{13} \cdot 5^{8} \cdot 7 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$3.201745119$ |
$1$ |
|
$5$ |
$331776$ |
$1.959278$ |
$3092354182009/1689383150$ |
$0.94489$ |
$4.44991$ |
$[0, 1, 0, -121408, -3892812]$ |
\(y^2=x^3+x^2-121408x-3892812\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.a.1, 60.24.0-6.a.1.4, $\ldots$ |
$[(388, 2750)]$ |
$1$ |
| 36400.l4 |
36400by1 |
36400.l |
36400by |
$4$ |
$6$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{7} \cdot 7^{2} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$1.600872559$ |
$1$ |
|
$7$ |
$165888$ |
$1.612705$ |
$1408317602329/2153060$ |
$0.89595$ |
$4.37501$ |
$[0, 1, 0, -93408, -11004812]$ |
\(y^2=x^3+x^2-93408x-11004812\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.d.1, 60.24.0-6.a.1.4, $\ldots$ |
$[(-172, 50)]$ |
$1$ |
| 36400.m1 |
36400bx6 |
36400.m |
36400bx |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{13} \cdot 5^{24} \cdot 7 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$5.385096474$ |
$1$ |
|
$3$ |
$5971968$ |
$3.507412$ |
$16375858190544687071329/9025573730468750$ |
$1.01214$ |
$6.58183$ |
$[0, 1, 0, -211618408, 1184255755188]$ |
\(y^2=x^3+x^2-211618408x+1184255755188\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ |
$[(11868, 586950)]$ |
$1$ |
| 36400.m2 |
36400bx5 |
36400.m |
36400bx |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{15} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$2.692548237$ |
$1$ |
|
$1$ |
$2985984$ |
$3.160839$ |
$16369358802802724130049/4976562500$ |
$1.01213$ |
$6.58179$ |
$[0, 1, 0, -211590408, 1184584979188]$ |
\(y^2=x^3+x^2-211590408x+1184584979188\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ |
$[(48142/3, 12250000/3)]$ |
$1$ |
| 36400.m3 |
36400bx4 |
36400.m |
36400bx |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{15} \cdot 5^{12} \cdot 7^{3} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.12.0.1 |
2B, 3Cs |
$32760$ |
$864$ |
$21$ |
$1.795032158$ |
$1$ |
|
$7$ |
$1990656$ |
$2.958107$ |
$932829715460155969/206949435875000$ |
$0.98163$ |
$5.65126$ |
$[0, 1, 0, -8142408, -7025244812]$ |
\(y^2=x^3+x^2-8142408x-7025244812\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 56.6.0.a.1, 60.72.0-6.a.1.1, $\ldots$ |
$[(-1612, 43750)]$ |
$1$ |
| 36400.m4 |
36400bx2 |
36400.m |
36400bx |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{21} \cdot 5^{8} \cdot 7 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$5.385096474$ |
$1$ |
|
$3$ |
$663552$ |
$2.408798$ |
$772531501373731009/15142400$ |
$0.97520$ |
$5.63331$ |
$[0, 1, 0, -7646408, -8140860812]$ |
\(y^2=x^3+x^2-7646408x-8140860812\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ |
$[(6268, 436150)]$ |
$1$ |
| 36400.m5 |
36400bx3 |
36400.m |
36400bx |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{18} \cdot 5^{9} \cdot 7^{6} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.12.0.1 |
2B, 3Cs |
$32760$ |
$864$ |
$21$ |
$0.897516079$ |
$1$ |
|
$9$ |
$995328$ |
$2.611530$ |
$32318182904349889/2067798824000$ |
$0.96161$ |
$5.33109$ |
$[0, 1, 0, -2654408, 1568963188]$ |
\(y^2=x^3+x^2-2654408x+1568963188\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 56.6.0.d.1, 60.72.0-6.a.1.1, $\ldots$ |
$[(628, 12250)]$ |
$1$ |
| 36400.m6 |
36400bx1 |
36400.m |
36400bx |
$6$ |
$18$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{30} \cdot 5^{7} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$2.692548237$ |
$1$ |
|
$3$ |
$331776$ |
$2.062225$ |
$189208196468929/834928640$ |
$0.93119$ |
$4.84162$ |
$[0, 1, 0, -478408, -127036812]$ |
\(y^2=x^3+x^2-478408x-127036812\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 18.36.0.a.1, $\ldots$ |
$[(-412, 550)]$ |
$1$ |
| 36400.n1 |
36400y1 |
36400.n |
36400y |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$0.487690290$ |
$1$ |
|
$9$ |
$13312$ |
$0.458783$ |
$995432756/637$ |
$0.83268$ |
$3.09250$ |
$[0, 1, 0, -1048, 12708]$ |
\(y^2=x^3+x^2-1048x+12708\) |
2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? |
$[(8, 70)]$ |
$1$ |
| 36400.n2 |
36400y2 |
36400.n |
36400y |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 5^{3} \cdot 7^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$0.243845145$ |
$1$ |
|
$13$ |
$26624$ |
$0.805356$ |
$-263744458/405769$ |
$0.85677$ |
$3.15554$ |
$[0, 1, 0, -848, 17908]$ |
\(y^2=x^3+x^2-848x+17908\) |
2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? |
$[(-2, 140)]$ |
$1$ |
| 36400.o1 |
36400bz3 |
36400.o |
36400bz |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$16380$ |
$144$ |
$3$ |
$1.433072345$ |
$1$ |
|
$2$ |
$279936$ |
$1.857969$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.35019$ |
$[0, 1, 0, -46933, 9629763]$ |
\(y^2=x^3+x^2-46933x+9629763\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 117.36.0.?, 180.24.0.?, $\ldots$ |
$[(134, 2401)]$ |
$1$ |
| 36400.o2 |
36400bz1 |
36400.o |
36400bz |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$16380$ |
$144$ |
$3$ |
$12.89765110$ |
$1$ |
|
$0$ |
$31104$ |
$0.759357$ |
$-43614208/91$ |
$0.87141$ |
$3.38676$ |
$[0, 1, 0, -2933, -62237]$ |
\(y^2=x^3+x^2-2933x-62237\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 117.36.0.?, 180.24.0.?, $\ldots$ |
$[(281734/61, 89498989/61)]$ |
$1$ |
| 36400.o3 |
36400bz2 |
36400.o |
36400bz |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$16380$ |
$144$ |
$3$ |
$4.299217035$ |
$1$ |
|
$2$ |
$93312$ |
$1.308664$ |
$224755712/753571$ |
$0.95798$ |
$3.69178$ |
$[0, 1, 0, 5067, -302237]$ |
\(y^2=x^3+x^2+5067x-302237\) |
3.12.0.a.1, 60.24.0-3.a.1.1, 117.36.0.?, 182.2.0.?, 546.24.1.?, $\ldots$ |
$[(222, 3437)]$ |
$1$ |
| 36400.p1 |
36400k1 |
36400.p |
36400k |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{11} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$614400$ |
$2.141708$ |
$477625344356176/234195040625$ |
$0.94513$ |
$4.66579$ |
$[0, 1, 0, -258508, 19682988]$ |
\(y^2=x^3+x^2-258508x+19682988\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 36400.p2 |
36400k2 |
36400.p |
36400k |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{10} \cdot 5^{16} \cdot 7^{4} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1228800$ |
$2.488285$ |
$5777565954713276/3962587890625$ |
$0.97010$ |
$5.03516$ |
$[0, 1, 0, 941992, 151737988]$ |
\(y^2=x^3+x^2+941992x+151737988\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 36400.q1 |
36400ca2 |
36400.q |
36400ca |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1.770549224$ |
$1$ |
|
$0$ |
$25920$ |
$0.649963$ |
$-71912815360/33787663$ |
$0.87212$ |
$3.00739$ |
$[0, 1, 0, -638, 8143]$ |
\(y^2=x^3+x^2-638x+8143\) |
3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.1, 420.16.0.? |
$[(211/3, 2197/3)]$ |
$1$ |
| 36400.q2 |
36400ca1 |
36400.q |
36400ca |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$0.590183074$ |
$1$ |
|
$2$ |
$8640$ |
$0.100657$ |
$64835840/57967$ |
$0.78657$ |
$2.28319$ |
$[0, 1, 0, 62, -117]$ |
\(y^2=x^3+x^2+62x-117\) |
3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 60.8.0-3.a.1.2, 420.16.0.? |
$[(19, 91)]$ |
$1$ |
| 36400.r1 |
36400ba2 |
36400.r |
36400ba |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{10} \cdot 5^{9} \cdot 7 \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$112640$ |
$1.243322$ |
$391888724/1183$ |
$0.88340$ |
$3.92322$ |
$[0, 1, 0, -19208, 1015588]$ |
\(y^2=x^3+x^2-19208x+1015588\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[ ]$ |
$1$ |
| 36400.r2 |
36400ba1 |
36400.r |
36400ba |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{9} \cdot 7^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$56320$ |
$0.896749$ |
$1102736/637$ |
$0.95829$ |
$3.23199$ |
$[0, 1, 0, -1708, 588]$ |
\(y^2=x^3+x^2-1708x+588\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[ ]$ |
$1$ |
| 36400.s1 |
36400e1 |
36400.s |
36400e |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 5^{12} \cdot 7 \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$599040$ |
$2.231728$ |
$-693346671296498/40610171875$ |
$0.93631$ |
$4.90846$ |
$[0, -1, 0, -585408, -180718688]$ |
\(y^2=x^3-x^2-585408x-180718688\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 36400.t1 |
36400v1 |
36400.t |
36400v |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$3.423424902$ |
$1$ |
|
$0$ |
$38400$ |
$0.984054$ |
$531573760/637$ |
$0.80763$ |
$3.66700$ |
$[0, -1, 0, -7833, -263963]$ |
\(y^2=x^3-x^2-7833x-263963\) |
26.2.0.a.1 |
$[(-203/2, 133/2)]$ |
$1$ |
| 36400.u1 |
36400cm2 |
36400.u |
36400cm |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{4} \cdot 7^{6} \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$156$ |
$16$ |
$0$ |
$1.900148390$ |
$1$ |
|
$8$ |
$62208$ |
$1.211878$ |
$13205749964800/1529437$ |
$0.96734$ |
$4.01764$ |
$[0, -1, 0, -26733, 1691137]$ |
\(y^2=x^3-x^2-26733x+1691137\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 26.2.0.a.1, 78.8.0.?, 156.16.0.? |
$[(133, 686), (93, 26)]$ |
$1$ |
| 36400.u2 |
36400cm1 |
36400.u |
36400cm |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{4} \cdot 7^{2} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$156$ |
$16$ |
$0$ |
$0.211127598$ |
$1$ |
|
$18$ |
$20736$ |
$0.662573$ |
$272588800/107653$ |
$0.87886$ |
$2.99042$ |
$[0, -1, 0, -733, -4063]$ |
\(y^2=x^3-x^2-733x-4063\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 26.2.0.a.1, 78.8.0.?, 156.16.0.? |
$[(97, 910), (-7, 26)]$ |
$1$ |
| 36400.v1 |
36400d1 |
36400.v |
36400d |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 5^{8} \cdot 7^{5} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$107520$ |
$1.459387$ |
$-32044133522/5462275$ |
$0.86001$ |
$3.97339$ |
$[0, -1, 0, -21008, 1340512]$ |
\(y^2=x^3-x^2-21008x+1340512\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 36400.w1 |
36400bv1 |
36400.w |
36400bv |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{12} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1.299666734$ |
$1$ |
|
$2$ |
$7680$ |
$0.209654$ |
$2560000/637$ |
$0.81958$ |
$2.50346$ |
$[0, -1, 0, -133, -403]$ |
\(y^2=x^3-x^2-133x-403\) |
26.2.0.a.1 |
$[(-4, 7)]$ |
$1$ |
| 36400.x1 |
36400o1 |
36400.x |
36400o |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 5^{6} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.771980827$ |
$1$ |
|
$6$ |
$13824$ |
$0.502982$ |
$-31250/91$ |
$0.83978$ |
$2.80205$ |
$[0, -1, 0, -208, 2912]$ |
\(y^2=x^3-x^2-208x+2912\) |
728.2.0.? |
$[(2, 50)]$ |
$1$ |
| 36400.y1 |
36400bt1 |
36400.y |
36400bt |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{31} \cdot 5^{2} \cdot 7^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.865535346$ |
$1$ |
|
$4$ |
$175104$ |
$1.823723$ |
$-96643333791265/212739817472$ |
$0.96503$ |
$4.31410$ |
$[0, -1, 0, -44728, -7965328]$ |
\(y^2=x^3-x^2-44728x-7965328\) |
8.2.0.a.1 |
$[(956, 28672)]$ |
$1$ |
| 36400.z1 |
36400cr1 |
36400.z |
36400cr |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{17} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$230400$ |
$1.924112$ |
$-23920470625/44783648$ |
$0.95980$ |
$4.43089$ |
$[0, -1, 0, -70208, 14758912]$ |
\(y^2=x^3-x^2-70208x+14758912\) |
8.2.0.a.1 |
$[ ]$ |
$1$ |
| 36400.ba1 |
36400bu1 |
36400.ba |
36400bu |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{10} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$2.662101771$ |
$1$ |
|
$2$ |
$783360$ |
$2.497921$ |
$11506050457600000/74942413$ |
$1.08428$ |
$5.58174$ |
$[0, -1, 0, -6383333, -6205375463]$ |
\(y^2=x^3-x^2-6383333x-6205375463\) |
26.2.0.a.1 |
$[(-1459, 182)]$ |
$1$ |
| 36400.bb1 |
36400ce1 |
36400.bb |
36400ce |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{29} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$470016$ |
$2.129429$ |
$-832972004929/14611251200$ |
$1.10595$ |
$4.65293$ |
$[0, -1, 0, -78408, -47260688]$ |
\(y^2=x^3-x^2-78408x-47260688\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 36400.bc1 |
36400bk4 |
36400.bc |
36400bk |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{17} \cdot 5^{6} \cdot 7^{3} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$2.188565881$ |
$1$ |
|
$5$ |
$2211840$ |
$2.947872$ |
$22868021811807457713/8953460393696$ |
$1.08758$ |
$5.95589$ |
$[0, 0, 0, -23653475, -44263278750]$ |
\(y^2=x^3-23653475x-44263278750\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.2, 56.24.0.bp.1, $\ldots$ |
$[(-2785, 3250)]$ |
$1$ |
| 36400.bc2 |
36400bk3 |
36400.bc |
36400bk |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{17} \cdot 5^{6} \cdot 7^{12} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$280$ |
$48$ |
$0$ |
$8.754263524$ |
$1$ |
|
$1$ |
$2211840$ |
$2.947872$ |
$3389174547561866673/74853681183008$ |
$1.05145$ |
$5.77410$ |
$[0, 0, 0, -12517475, 16717585250]$ |
\(y^2=x^3-12517475x+16717585250\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.2, 40.24.0-8.k.1.2, $\ldots$ |
$[(133730/7, 18417750/7)]$ |
$1$ |
| 36400.bc3 |
36400bk2 |
36400.bc |
36400bk |
$4$ |
$4$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{22} \cdot 5^{6} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$280$ |
$48$ |
$0$ |
$4.377131762$ |
$1$ |
|
$5$ |
$1105920$ |
$2.601299$ |
$8511781274893233/3440817243136$ |
$1.08472$ |
$5.20405$ |
$[0, 0, 0, -1701475, -469038750]$ |
\(y^2=x^3-1701475x-469038750\) |
2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.1, $\ldots$ |
$[(2050, 68250)]$ |
$1$ |