Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
35131.a1 |
35131e1 |
35131.a |
35131e |
$1$ |
$1$ |
\( 19 \cdot 43^{2} \) |
\( - 19^{3} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$11.80377149$ |
$1$ |
|
$0$ |
$55692$ |
$1.216486$ |
$-48888643731442873/6859$ |
$0.97864$ |
$4.39012$ |
$[1, 1, 1, -93499, -11043164]$ |
\(y^2+xy+y=x^3+x^2-93499x-11043164\) |
38.2.0.a.1 |
$[(943720/7, 913389476/7)]$ |
35131.b1 |
35131c3 |
35131.b |
35131c |
$3$ |
$9$ |
\( 19 \cdot 43^{2} \) |
\( - 19 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$44118$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$243810$ |
$1.914040$ |
$-50357871050752/19$ |
$1.10495$ |
$5.17036$ |
$[0, -1, 1, -1422497, 653492395]$ |
\(y^2+y=x^3-x^2-1422497x+653492395\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 38.2.0.a.1, 114.8.0.?, $\ldots$ |
$[ ]$ |
35131.b2 |
35131c2 |
35131.b |
35131c |
$3$ |
$9$ |
\( 19 \cdot 43^{2} \) |
\( - 19^{3} \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$44118$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$81270$ |
$1.364733$ |
$-89915392/6859$ |
$1.03310$ |
$3.91765$ |
$[0, -1, 1, -17257, 934070]$ |
\(y^2+y=x^3-x^2-17257x+934070\) |
3.12.0.a.1, 9.36.0.b.1, 38.2.0.a.1, 114.24.1.?, 129.24.0.?, $\ldots$ |
$[ ]$ |
35131.b3 |
35131c1 |
35131.b |
35131c |
$3$ |
$9$ |
\( 19 \cdot 43^{2} \) |
\( - 19 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$44118$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$27090$ |
$0.815427$ |
$32768/19$ |
$1.31757$ |
$3.14941$ |
$[0, -1, 1, 1233, 325]$ |
\(y^2+y=x^3-x^2+1233x+325\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 38.2.0.a.1, 114.8.0.?, $\ldots$ |
$[ ]$ |
35131.c1 |
35131b1 |
35131.c |
35131b |
$1$ |
$1$ |
\( 19 \cdot 43^{2} \) |
\( - 19^{2} \cdot 43^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$2143680$ |
$2.970737$ |
$-510404220761669632/53070047923$ |
$1.01043$ |
$6.05162$ |
$[0, -1, 1, -30784617, -65738528417]$ |
\(y^2+y=x^3-x^2-30784617x-65738528417\) |
86.2.0.? |
$[ ]$ |
35131.d1 |
35131d1 |
35131.d |
35131d |
$1$ |
$1$ |
\( 19 \cdot 43^{2} \) |
\( - 19^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$7.215444374$ |
$1$ |
|
$0$ |
$103488$ |
$1.363857$ |
$32768/15523$ |
$0.86481$ |
$3.79014$ |
$[0, -1, 1, 1233, -476717]$ |
\(y^2+y=x^3-x^2+1233x-476717\) |
86.2.0.? |
$[(1157/2, 39185/2)]$ |
35131.e1 |
35131a1 |
35131.e |
35131a |
$1$ |
$1$ |
\( 19 \cdot 43^{2} \) |
\( - 19^{3} \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$19.55984801$ |
$1$ |
|
$0$ |
$2394756$ |
$3.097084$ |
$-48888643731442873/6859$ |
$0.97864$ |
$6.54619$ |
$[1, 0, 1, -172879690, 874896991611]$ |
\(y^2+xy+y=x^3-172879690x+874896991611\) |
38.2.0.a.1 |
$[(581015791/215, 8179492880766/215)]$ |