Learn more

Refine search


Results (1-50 of 303 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
350350.a1 350350.a \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $124.7257518$ $[1, -1, 0, -19574926072, -1054151095634624]$ \(y^2+xy=x^3-x^2-19574926072x-1054151095634624\) 286.2.0.? $[(88843651098876283586635377684016379410326240320559666608/23424898113175252603128809, 57637830284910826277040453809632793883736028121851362470230389838660646150439627112/23424898113175252603128809)]$
350350.b1 350350.b \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1822, -442604]$ \(y^2+xy=x^3-x^2-1822x-442604\) 286.2.0.? $[ ]$
350350.c1 350350.c \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -78182302, -307780152044]$ \(y^2+xy=x^3-x^2-78182302x-307780152044\) 40040.2.0.? $[ ]$
350350.d1 350350.d \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $5.465615416$ $[1, -1, 0, -2888167, 2250036991]$ \(y^2+xy=x^3-x^2-2888167x+2250036991\) 40040.2.0.? $[(21499, 3131988)]$
350350.e1 350350.e \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3744442, -5680734284]$ \(y^2+xy=x^3-x^2-3744442x-5680734284\) 440.2.0.? $[ ]$
350350.f1 350350.f \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $4.376436416$ $[1, -1, 0, -855135367, 9625208820541]$ \(y^2+xy=x^3-x^2-855135367x+9625208820541\) 308.2.0.? $[(12798, 875209)]$
350350.g1 350350.g \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -97651346651, 8059169852676198]$ \(y^2+xy+y=x^3-97651346651x+8059169852676198\) 2.3.0.a.1, 56.6.0.a.1, 1144.6.0.?, 4004.6.0.?, 8008.12.0.? $[ ]$
350350.g2 350350.g \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -88870546651, 10195801916676198]$ \(y^2+xy+y=x^3-88870546651x+10195801916676198\) 2.3.0.a.1, 56.6.0.d.1, 1144.6.0.?, 2002.6.0.?, 8008.12.0.? $[ ]$
350350.h1 350350.h \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $10.51429363$ $[1, 0, 1, -6492526, -6177699552]$ \(y^2+xy+y=x^3-6492526x-6177699552\) 2.3.0.a.1, 56.6.0.a.1, 1144.6.0.?, 4004.6.0.?, 8008.12.0.? $[(3042, 45641), (-1518, 14196)]$
350350.h2 350350.h \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $10.51429363$ $[1, 0, 1, -1004526, 254236448]$ \(y^2+xy+y=x^3-1004526x+254236448\) 2.3.0.a.1, 56.6.0.d.1, 1144.6.0.?, 2002.6.0.?, 8008.12.0.? $[(197, 7901), (862, 4956)]$
350350.i1 350350.i \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.901879557$ $[1, 0, 1, -45841, -550812]$ \(y^2+xy+y=x^3-45841x-550812\) 8.2.0.b.1 $[(298, 3354)]$
350350.j1 350350.j \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $1.697339849$ $[1, 0, 1, -14901, 414698]$ \(y^2+xy+y=x^3-14901x+414698\) 2.3.0.a.1, 56.6.0.a.1, 1144.6.0.?, 4004.6.0.?, 8008.12.0.? $[(-38, 981), (22, 301)]$
350350.j2 350350.j \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $1.697339849$ $[1, 0, 1, -13151, 579198]$ \(y^2+xy+y=x^3-13151x+579198\) 2.3.0.a.1, 56.6.0.d.1, 1144.6.0.?, 2002.6.0.?, 8008.12.0.? $[(57, 96), (-93, 1046)]$
350350.k1 350350.k \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/3\Z$ $1.112512318$ $[1, 0, 1, -19738451, 33751770798]$ \(y^2+xy+y=x^3-19738451x+33751770798\) 3.8.0-3.a.1.2, 52.2.0.a.1, 156.16.0.? $[(2591, 992)]$
350350.k2 350350.k \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $3.337536956$ $[1, 0, 1, -17747826, 40828044548]$ \(y^2+xy+y=x^3-17747826x+40828044548\) 3.8.0-3.a.1.1, 52.2.0.a.1, 156.16.0.? $[(-37931/3, 5508659/3)]$
350350.l1 350350.l \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $5.972195353$ $[1, 0, 1, -123495951, 5823494383298]$ \(y^2+xy+y=x^3-123495951x+5823494383298\) 3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ $[(-466156/5, 161406818/5)]$
350350.l2 350350.l \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $17.91658606$ $[1, 0, 1, 13704049, -214128816702]$ \(y^2+xy+y=x^3+13704049x-214128816702\) 3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ $[(1400812149/460, 39423081970187/460)]$
350350.m1 350350.m \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.804434330$ $[1, 0, 1, -1226251, -436930602]$ \(y^2+xy+y=x^3-1226251x-436930602\) 2.3.0.a.1, 56.6.0.a.1, 220.6.0.?, 3080.12.0.? $[(-528, 8226)]$
350350.m2 350350.m \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.608868660$ $[1, 0, 1, 145749, -39050602]$ \(y^2+xy+y=x^3+145749x-39050602\) 2.3.0.a.1, 56.6.0.d.1, 110.6.0.?, 3080.12.0.? $[(431, 9976)]$
350350.n1 350350.n \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.974348727$ $[1, 0, 1, -159276, 24454868]$ \(y^2+xy+y=x^3-159276x+24454868\) 3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ $[(228, -41)]$
350350.n2 350350.n \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.658116242$ $[1, 0, 1, -26, 95988]$ \(y^2+xy+y=x^3-26x+95988\) 3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ $[(18, 309)]$
350350.o1 350350.o \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.910275763$ $[1, 0, 1, -580760276, 4182570799698]$ \(y^2+xy+y=x^3-580760276x+4182570799698\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 $[(32842, 4514891)]$
350350.o2 350350.o \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $5.820551527$ $[1, 0, 1, 83287724, 405465775698]$ \(y^2+xy+y=x^3+83287724x+405465775698\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 $[(39058/3, 24814462/3)]$
350350.p1 350350.p \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $3.274796284$ $[1, 0, 1, -151056001, 714556700148]$ \(y^2+xy+y=x^3-151056001x+714556700148\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ $[(7571, 66186)]$
350350.p2 350350.p \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $6.549592568$ $[1, 0, 1, -144931001, 775157450148]$ \(y^2+xy+y=x^3-144931001x+775157450148\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ $[(46264/3, 10930772/3)]$
350350.p3 350350.p \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.091598761$ $[1, 0, 1, -3272001, -687283852]$ \(y^2+xy+y=x^3-3272001x-687283852\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ $[(-1088, 40356)]$
350350.p4 350350.p \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.183197522$ $[1, 0, 1, 12407999, -5359923852]$ \(y^2+xy+y=x^3+12407999x-5359923852\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ $[(2496, 201636)]$
350350.q1 350350.q \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -781576, -272114202]$ \(y^2+xy+y=x^3-781576x-272114202\) 52.2.0.a.1 $[ ]$
350350.r1 350350.r \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -788909826, -8528689541452]$ \(y^2+xy+y=x^3-788909826x-8528689541452\) 8.2.0.b.1 $[ ]$
350350.s1 350350.s \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 118799, 320332548]$ \(y^2+xy+y=x^3+118799x+320332548\) 52.2.0.a.1 $[ ]$
350350.t1 350350.t \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 8853049, -7324659702]$ \(y^2+xy+y=x^3+8853049x-7324659702\) 8008.2.0.? $[ ]$
350350.u1 350350.u \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $3.063992173$ $[1, 0, 1, -28672376, 59091344148]$ \(y^2+xy+y=x^3-28672376x+59091344148\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ $[(3072, 251), (3098, -1868)]$
350350.u2 350350.u \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $0.765998043$ $[1, 0, 1, -1759126, 958724148]$ \(y^2+xy+y=x^3-1759126x+958724148\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ $[(-1088, 40356), (732, 7596)]$
350350.u3 350350.u \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $3.063992173$ $[1, 0, 1, -509626, 2930148]$ \(y^2+xy+y=x^3-509626x+2930148\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ $[(762, 7181), (1488, 49652)]$
350350.u4 350350.u \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $0.765998043$ $[1, 0, 1, 127374, 382148]$ \(y^2+xy+y=x^3+127374x+382148\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ $[(242, 6616), (88, 3459)]$
350350.v1 350350.v \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $2.019408578$ $[1, 0, 1, -211545276, 1184258864198]$ \(y^2+xy+y=x^3-211545276x+1184258864198\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ $[(8621, 31361), (8387, -2569)]$
350350.v2 350350.v \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $2.019408578$ $[1, 0, 1, -211484026, 1184978919198]$ \(y^2+xy+y=x^3-211484026x+1184978919198\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ $[(-528, 1138901), (7922, 78426)]$
350350.v3 350350.v \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $2.019408578$ $[1, 0, 1, -2682776, 1531164198]$ \(y^2+xy+y=x^3-2682776x+1531164198\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ $[(662, 6406), (1322, 16526)]$
350350.v4 350350.v \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $2.019408578$ $[1, 0, 1, 3442224, 7509164198]$ \(y^2+xy+y=x^3+3442224x+7509164198\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ $[(572, 98026), (7163/2, 1107583/2)]$
350350.w1 350350.w \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.664507611$ $[1, 0, 1, -2711196, 751371338]$ \(y^2+xy+y=x^3-2711196x+751371338\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[(1768, 37654)]$
350350.w2 350350.w \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.332253805$ $[1, 0, 1, 601204, 88891338]$ \(y^2+xy+y=x^3+601204x+88891338\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[(312, 17361)]$
350350.x1 350350.x \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 71550, 4286500]$ \(y^2+xy=x^3+x^2+71550x+4286500\) 286.2.0.? $[ ]$
350350.y1 350350.y \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.840693964$ $[1, 1, 0, -10875, 437725]$ \(y^2+xy=x^3+x^2-10875x+437725\) 3.4.0.a.1, 21.8.0-3.a.1.2, 286.2.0.?, 858.8.0.?, 6006.16.0.? $[(70, 125)]$
350350.y2 350350.y \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.522081892$ $[1, 1, 0, 500, 3200]$ \(y^2+xy=x^3+x^2+500x+3200\) 3.4.0.a.1, 21.8.0-3.a.1.1, 286.2.0.?, 858.8.0.?, 6006.16.0.? $[(-4, 36)]$
350350.z1 350350.z \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.967447064$ $[1, 1, 0, -4680, 133120]$ \(y^2+xy=x^3+x^2-4680x+133120\) 3.4.0.a.1, 15.8.0-3.a.1.2, 286.2.0.?, 858.8.0.?, 4290.16.0.? $[(24, 176)]$
350350.z2 350350.z \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $8.902341194$ $[1, 1, 0, 29620, -216740]$ \(y^2+xy=x^3+x^2+29620x-216740\) 3.4.0.a.1, 15.8.0-3.a.1.1, 286.2.0.?, 858.8.0.?, 4290.16.0.? $[(10314, 1042520)]$
350350.ba1 350350.ba \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.752544031$ $[1, 1, 0, -25, 206375]$ \(y^2+xy=x^3+x^2-25x+206375\) 40040.2.0.? $[(55, 585)]$
350350.bb1 350350.bb \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $14.93891139$ $[1, 1, 0, -1146625, -473096875]$ \(y^2+xy=x^3+x^2-1146625x-473096875\) 440.2.0.? $[(50540305/89, 351658350690/89)]$
350350.bc1 350350.bc \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.854265447$ $[1, 1, 0, -95, -1175]$ \(y^2+xy=x^3+x^2-95x-1175\) 20.2.0.a.1 $[(80, 675), (15, 25)]$
350350.bd1 350350.bd \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.655062009$ $[1, 1, 0, 127375, 108286165]$ \(y^2+xy=x^3+x^2+127375x+108286165\) 308.2.0.? $[(66, 10783)]$
Next   displayed columns for results