Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
350350.a1 |
350350a1 |
350350.a |
350350a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{26} \cdot 5^{2} \cdot 7^{10} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$124.7257518$ |
$1$ |
|
$0$ |
$1168981632$ |
$4.531952$ |
$-117463704966052899285072465/2057109481887629312$ |
$1.04856$ |
$6.47828$ |
$[1, -1, 0, -19574926072, -1054151095634624]$ |
\(y^2+xy=x^3-x^2-19574926072x-1054151095634624\) |
286.2.0.? |
$[(88843651098876283586635377684016379410326240320559666608/23424898113175252603128809, 57637830284910826277040453809632793883736028121851362470230389838660646150439627112/23424898113175252603128809)]$ |
350350.b1 |
350350b1 |
350350.b |
350350b |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{12} \cdot 5^{2} \cdot 7^{8} \cdot 11 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2225664$ |
$1.351679$ |
$-4642785/585728$ |
$0.86283$ |
$3.09603$ |
$[1, -1, 0, -1822, -442604]$ |
\(y^2+xy=x^3-x^2-1822x-442604\) |
286.2.0.? |
$[ ]$ |
350350.c1 |
350350c1 |
350350.c |
350350c |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{35} \cdot 5^{3} \cdot 7^{7} \cdot 11^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40040$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$178053120$ |
$3.523125$ |
$-3593774502791903259549/703324912177119232$ |
$1.00024$ |
$5.20327$ |
$[1, -1, 0, -78182302, -307780152044]$ |
\(y^2+xy=x^3-x^2-78182302x-307780152044\) |
40040.2.0.? |
$[ ]$ |
350350.d1 |
350350d1 |
350350.d |
350350d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2 \cdot 5^{9} \cdot 7^{9} \cdot 11 \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40040$ |
$2$ |
$0$ |
$5.465615416$ |
$1$ |
|
$2$ |
$34191360$ |
$2.711414$ |
$-4225599329463/1021055750$ |
$0.89032$ |
$4.43270$ |
$[1, -1, 0, -2888167, 2250036991]$ |
\(y^2+xy=x^3-x^2-2888167x+2250036991\) |
40040.2.0.? |
$[(21499, 3131988)]$ |
350350.e1 |
350350e1 |
350350.e |
350350e |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{13} \cdot 5^{11} \cdot 7^{6} \cdot 11^{3} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$440$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$49420800$ |
$2.916245$ |
$-3158470573163361/5758438400000$ |
$0.98240$ |
$4.57786$ |
$[1, -1, 0, -3744442, -5680734284]$ |
\(y^2+xy=x^3-x^2-3744442x-5680734284\) |
440.2.0.? |
$[ ]$ |
350350.f1 |
350350f1 |
350350.f |
350350f |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 5^{8} \cdot 7^{13} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$308$ |
$2$ |
$0$ |
$4.376436416$ |
$1$ |
|
$2$ |
$211599360$ |
$3.643475$ |
$-1504804368040930723545/391927407872$ |
$0.98810$ |
$5.74259$ |
$[1, -1, 0, -855135367, 9625208820541]$ |
\(y^2+xy=x^3-x^2-855135367x+9625208820541\) |
308.2.0.? |
$[(12798, 875209)]$ |
350350.g1 |
350350g2 |
350350.g |
350350g |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{13} \cdot 5^{8} \cdot 7^{9} \cdot 11^{6} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8008$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3891363840$ |
$5.324501$ |
$163326267131085934957321687/50017224228558087987200$ |
$1.01855$ |
$6.85594$ |
$[1, 0, 1, -97651346651, 8059169852676198]$ |
\(y^2+xy+y=x^3-97651346651x+8059169852676198\) |
2.3.0.a.1, 56.6.0.a.1, 1144.6.0.?, 4004.6.0.?, 8008.12.0.? |
$[ ]$ |
350350.g2 |
350350g1 |
350350.g |
350350g |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{26} \cdot 5^{10} \cdot 7^{9} \cdot 11^{3} \cdot 13^{5} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8008$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1945681920$ |
$4.977928$ |
$123110439197515931177737687/20727872167608320000$ |
$1.01138$ |
$6.83380$ |
$[1, 0, 1, -88870546651, 10195801916676198]$ |
\(y^2+xy+y=x^3-88870546651x+10195801916676198\) |
2.3.0.a.1, 56.6.0.d.1, 1144.6.0.?, 2002.6.0.?, 8008.12.0.? |
$[ ]$ |
350350.h1 |
350350h2 |
350350.h |
350350h |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{7} \cdot 5^{10} \cdot 7^{9} \cdot 11^{2} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8008$ |
$12$ |
$0$ |
$10.51429363$ |
$1$ |
|
$12$ |
$28901376$ |
$2.804142$ |
$48002330445607/1635920000$ |
$0.88593$ |
$4.59572$ |
$[1, 0, 1, -6492526, -6177699552]$ |
\(y^2+xy+y=x^3-6492526x-6177699552\) |
2.3.0.a.1, 56.6.0.a.1, 1144.6.0.?, 4004.6.0.?, 8008.12.0.? |
$[(3042, 45641), (-1518, 14196)]$ |
350350.h2 |
350350h1 |
350350.h |
350350h |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{14} \cdot 5^{8} \cdot 7^{9} \cdot 11 \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8008$ |
$12$ |
$0$ |
$10.51429363$ |
$1$ |
|
$11$ |
$14450688$ |
$2.457569$ |
$177788739367/58572800$ |
$0.84924$ |
$4.15720$ |
$[1, 0, 1, -1004526, 254236448]$ |
\(y^2+xy+y=x^3-1004526x+254236448\) |
2.3.0.a.1, 56.6.0.d.1, 1144.6.0.?, 2002.6.0.?, 8008.12.0.? |
$[(197, 7901), (862, 4956)]$ |
350350.i1 |
350350i1 |
350350.i |
350350i |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{11} \cdot 5^{2} \cdot 7^{8} \cdot 11^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$0.901879557$ |
$1$ |
|
$4$ |
$2572416$ |
$1.717985$ |
$73917626545/41879552$ |
$0.89228$ |
$3.43177$ |
$[1, 0, 1, -45841, -550812]$ |
\(y^2+xy+y=x^3-45841x-550812\) |
8.2.0.b.1 |
$[(298, 3354)]$ |
350350.j1 |
350350j2 |
350350.j |
350350j |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2 \cdot 5^{10} \cdot 7^{3} \cdot 11^{2} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8008$ |
$12$ |
$0$ |
$1.697339849$ |
$1$ |
|
$14$ |
$1572864$ |
$1.412325$ |
$68267486503/25561250$ |
$0.84264$ |
$3.16770$ |
$[1, 0, 1, -14901, 414698]$ |
\(y^2+xy+y=x^3-14901x+414698\) |
2.3.0.a.1, 56.6.0.a.1, 1144.6.0.?, 4004.6.0.?, 8008.12.0.? |
$[(-38, 981), (22, 301)]$ |
350350.j2 |
350350j1 |
350350.j |
350350j |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{2} \cdot 5^{8} \cdot 7^{3} \cdot 11 \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8008$ |
$12$ |
$0$ |
$1.697339849$ |
$1$ |
|
$17$ |
$786432$ |
$1.065750$ |
$46928689543/14300$ |
$0.82419$ |
$3.13834$ |
$[1, 0, 1, -13151, 579198]$ |
\(y^2+xy+y=x^3-13151x+579198\) |
2.3.0.a.1, 56.6.0.d.1, 1144.6.0.?, 2002.6.0.?, 8008.12.0.? |
$[(57, 96), (-93, 1046)]$ |
350350.k1 |
350350k1 |
350350.k |
350350k |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 5^{8} \cdot 7^{4} \cdot 11^{2} \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$156$ |
$16$ |
$0$ |
$1.112512318$ |
$1$ |
|
$8$ |
$20528640$ |
$2.673878$ |
$-906798283425435625/68054272$ |
$1.00060$ |
$4.85700$ |
$[1, 0, 1, -19738451, 33751770798]$ |
\(y^2+xy+y=x^3-19738451x+33751770798\) |
3.8.0-3.a.1.2, 52.2.0.a.1, 156.16.0.? |
$[(2591, 992)]$ |
350350.k2 |
350350k2 |
350350.k |
350350k |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{24} \cdot 5^{8} \cdot 7^{4} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$156$ |
$16$ |
$0$ |
$3.337536956$ |
$1$ |
|
$0$ |
$61585920$ |
$3.223186$ |
$-659184472767585625/386384200204288$ |
$1.00776$ |
$4.88682$ |
$[1, 0, 1, -17747826, 40828044548]$ |
\(y^2+xy+y=x^3-17747826x+40828044548\) |
3.8.0-3.a.1.1, 52.2.0.a.1, 156.16.0.? |
$[(-37931/3, 5508659/3)]$ |
350350.l1 |
350350l2 |
350350.l |
350350l |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{7} \cdot 5^{10} \cdot 7^{7} \cdot 11^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120120$ |
$16$ |
$0$ |
$5.972195353$ |
$1$ |
|
$0$ |
$287400960$ |
$4.083572$ |
$-181298236675437025/12646671444254848$ |
$0.99522$ |
$5.66388$ |
$[1, 0, 1, -123495951, 5823494383298]$ |
\(y^2+xy+y=x^3-123495951x+5823494383298\) |
3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ |
$[(-466156/5, 161406818/5)]$ |
350350.l2 |
350350l1 |
350350.l |
350350l |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{21} \cdot 5^{10} \cdot 7^{9} \cdot 11 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120120$ |
$16$ |
$0$ |
$17.91658606$ |
$1$ |
|
$0$ |
$95800320$ |
$3.534264$ |
$247732042130975/17383882227712$ |
$0.96663$ |
$5.14643$ |
$[1, 0, 1, 13704049, -214128816702]$ |
\(y^2+xy+y=x^3+13704049x-214128816702\) |
3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ |
$[(1400812149/460, 39423081970187/460)]$ |
350350.m1 |
350350m2 |
350350.m |
350350m |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{5} \cdot 5^{8} \cdot 7^{7} \cdot 11^{2} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3080$ |
$12$ |
$0$ |
$0.804434330$ |
$1$ |
|
$8$ |
$11796480$ |
$2.471443$ |
$110931033861649/19352933600$ |
$0.87215$ |
$4.20407$ |
$[1, 0, 1, -1226251, -436930602]$ |
\(y^2+xy+y=x^3-1226251x-436930602\) |
2.3.0.a.1, 56.6.0.a.1, 220.6.0.?, 3080.12.0.? |
$[(-528, 8226)]$ |
350350.m2 |
350350m1 |
350350.m |
350350m |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 5^{7} \cdot 7^{8} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3080$ |
$12$ |
$0$ |
$1.608868660$ |
$1$ |
|
$7$ |
$5898240$ |
$2.124870$ |
$186267240431/466385920$ |
$0.84260$ |
$3.79774$ |
$[1, 0, 1, 145749, -39050602]$ |
\(y^2+xy+y=x^3+145749x-39050602\) |
2.3.0.a.1, 56.6.0.d.1, 110.6.0.?, 3080.12.0.? |
$[(431, 9976)]$ |
350350.n1 |
350350n2 |
350350.n |
350350n |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2 \cdot 5^{2} \cdot 7^{9} \cdot 11^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120120$ |
$16$ |
$0$ |
$1.974348727$ |
$1$ |
|
$2$ |
$2737152$ |
$1.645893$ |
$-151929659700625/11869858$ |
$1.05315$ |
$3.72445$ |
$[1, 0, 1, -159276, 24454868]$ |
\(y^2+xy+y=x^3-159276x+24454868\) |
3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ |
$[(228, -41)]$ |
350350.n2 |
350350n1 |
350350.n |
350350n |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{3} \cdot 5^{2} \cdot 7^{7} \cdot 11 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120120$ |
$16$ |
$0$ |
$0.658116242$ |
$1$ |
|
$4$ |
$912384$ |
$1.096586$ |
$-625/1353352$ |
$1.02258$ |
$2.85643$ |
$[1, 0, 1, -26, 95988]$ |
\(y^2+xy+y=x^3-26x+95988\) |
3.4.0.a.1, 105.8.0.?, 8008.2.0.?, 17160.8.0.?, 24024.8.0.?, $\ldots$ |
$[(18, 309)]$ |
350350.o1 |
350350o2 |
350350.o |
350350o |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{7} \cdot 5^{10} \cdot 7^{9} \cdot 11^{2} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$2.910275763$ |
$1$ |
|
$2$ |
$289013760$ |
$4.026909$ |
$34356746763474064327/7896273379280000$ |
$0.96593$ |
$5.65167$ |
$[1, 0, 1, -580760276, 4182570799698]$ |
\(y^2+xy+y=x^3-580760276x+4182570799698\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[(32842, 4514891)]$ |
350350.o2 |
350350o1 |
350350.o |
350350o |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{14} \cdot 5^{8} \cdot 7^{9} \cdot 11^{4} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$5.820551527$ |
$1$ |
|
$1$ |
$144506880$ |
$3.680336$ |
$101336130396640313/171278991769600$ |
$0.95117$ |
$5.24644$ |
$[1, 0, 1, 83287724, 405465775698]$ |
\(y^2+xy+y=x^3+83287724x+405465775698\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[(39058/3, 24814462/3)]$ |
350350.p1 |
350350p3 |
350350.p |
350350p |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{6} \cdot 5^{12} \cdot 7^{9} \cdot 11^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$3.274796284$ |
$1$ |
|
$3$ |
$77635584$ |
$3.329803$ |
$207362104287019679089/5934929000000$ |
$0.94902$ |
$5.33522$ |
$[1, 0, 1, -151056001, 714556700148]$ |
\(y^2+xy+y=x^3-151056001x+714556700148\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ |
$[(7571, 66186)]$ |
350350.p2 |
350350p4 |
350350.p |
350350p |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{3} \cdot 5^{9} \cdot 7^{12} \cdot 11^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$6.549592568$ |
$1$ |
|
$0$ |
$155271168$ |
$3.676376$ |
$-183146792453150159089/35223382235041000$ |
$0.95155$ |
$5.34797$ |
$[1, 0, 1, -144931001, 775157450148]$ |
\(y^2+xy+y=x^3-144931001x+775157450148\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ |
$[(46264/3, 10930772/3)]$ |
350350.p3 |
350350p1 |
350350.p |
350350p |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{18} \cdot 5^{8} \cdot 7^{7} \cdot 11 \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$1.091598761$ |
$1$ |
|
$7$ |
$25878528$ |
$2.780499$ |
$2107441550633329/1108665958400$ |
$0.91612$ |
$4.43469$ |
$[1, 0, 1, -3272001, -687283852]$ |
\(y^2+xy+y=x^3-3272001x-687283852\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ |
$[(-1088, 40356)]$ |
350350.p4 |
350350p2 |
350350.p |
350350p |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{9} \cdot 5^{7} \cdot 7^{8} \cdot 11^{2} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$2.183197522$ |
$1$ |
|
$4$ |
$51757056$ |
$3.127071$ |
$114926649504265871/73262465436160$ |
$1.02843$ |
$4.74792$ |
$[1, 0, 1, 12407999, -5359923852]$ |
\(y^2+xy+y=x^3+12407999x-5359923852\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ |
$[(2496, 201636)]$ |
350350.q1 |
350350q1 |
350350.q |
350350q |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{10} \cdot 7^{8} \cdot 11^{2} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7176960$ |
$2.264866$ |
$-937890625/25168$ |
$1.00205$ |
$4.10178$ |
$[1, 0, 1, -781576, -272114202]$ |
\(y^2+xy+y=x^3-781576x-272114202\) |
52.2.0.a.1 |
$[ ]$ |
350350.r1 |
350350r1 |
350350.r |
350350r |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{5} \cdot 5^{8} \cdot 7^{10} \cdot 11^{4} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$134668800$ |
$3.741581$ |
$492113605773230665/13381171232$ |
$0.96024$ |
$5.72365$ |
$[1, 0, 1, -788909826, -8528689541452]$ |
\(y^2+xy+y=x^3-788909826x-8528689541452\) |
8.2.0.b.1 |
$[ ]$ |
350350.s1 |
350350s1 |
350350.s |
350350s |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 5^{8} \cdot 7^{10} \cdot 11^{2} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14031360$ |
$2.449238$ |
$1680455/402688$ |
$0.86887$ |
$4.12737$ |
$[1, 0, 1, 118799, 320332548]$ |
\(y^2+xy+y=x^3+118799x+320332548\) |
52.2.0.a.1 |
$[ ]$ |
350350.t1 |
350350t1 |
350350.t |
350350t |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 5^{8} \cdot 7^{9} \cdot 11^{5} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8008$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38016000$ |
$3.068108$ |
$1669760225634695/1470722885632$ |
$0.91757$ |
$4.66859$ |
$[1, 0, 1, 8853049, -7324659702]$ |
\(y^2+xy+y=x^3+8853049x-7324659702\) |
8008.2.0.? |
$[ ]$ |
350350.u1 |
350350u4 |
350350.u |
350350u |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2 \cdot 5^{12} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$3.063992173$ |
$1$ |
|
$14$ |
$31850496$ |
$2.870678$ |
$1418098748958579169/8307406250$ |
$1.04337$ |
$4.94474$ |
$[1, 0, 1, -28672376, 59091344148]$ |
\(y^2+xy+y=x^3-28672376x+59091344148\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ |
$[(3072, 251), (3098, -1868)]$ |
350350.u2 |
350350u3 |
350350.u |
350350u |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{2} \cdot 5^{9} \cdot 7^{6} \cdot 11 \cdot 13^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$0.765998043$ |
$1$ |
|
$23$ |
$15925248$ |
$2.524105$ |
$-327495950129089/26547449500$ |
$1.01229$ |
$4.29913$ |
$[1, 0, 1, -1759126, 958724148]$ |
\(y^2+xy+y=x^3-1759126x+958724148\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ |
$[(-1088, 40356), (732, 7596)]$ |
350350.u3 |
350350u2 |
350350.u |
350350u |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{3} \cdot 5^{8} \cdot 7^{6} \cdot 11^{6} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$3.063992173$ |
$1$ |
|
$12$ |
$10616832$ |
$2.321373$ |
$7962857630209/4606058600$ |
$1.01501$ |
$3.99774$ |
$[1, 0, 1, -509626, 2930148]$ |
\(y^2+xy+y=x^3-509626x+2930148\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ |
$[(762, 7181), (1488, 49652)]$ |
350350.u4 |
350350u1 |
350350.u |
350350u |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{6} \cdot 5^{7} \cdot 7^{6} \cdot 11^{3} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$0.765998043$ |
$1$ |
|
$27$ |
$5308416$ |
$1.974798$ |
$124326214271/71980480$ |
$0.99017$ |
$3.67192$ |
$[1, 0, 1, 127374, 382148]$ |
\(y^2+xy+y=x^3+127374x+382148\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 104.6.0.?, 105.8.0.?, $\ldots$ |
$[(242, 6616), (88, 3459)]$ |
350350.v1 |
350350v3 |
350350.v |
350350v |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{2} \cdot 5^{8} \cdot 7^{9} \cdot 11 \cdot 13^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$2.019408578$ |
$1$ |
|
$17$ |
$49766400$ |
$3.188717$ |
$569541582763202518561/828928100$ |
$0.95323$ |
$5.41436$ |
$[1, 0, 1, -211545276, 1184258864198]$ |
\(y^2+xy+y=x^3-211545276x+1184258864198\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ |
$[(8621, 31361), (8387, -2569)]$ |
350350.v2 |
350350v4 |
350350.v |
350350v |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2 \cdot 5^{7} \cdot 7^{12} \cdot 11^{2} \cdot 13^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$2.019408578$ |
$1$ |
|
$12$ |
$99532800$ |
$3.535290$ |
$-569047017391330383361/687121794969610$ |
$0.95325$ |
$5.41446$ |
$[1, 0, 1, -211484026, 1184978919198]$ |
\(y^2+xy+y=x^3-211484026x+1184978919198\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ |
$[(-528, 1138901), (7922, 78426)]$ |
350350.v3 |
350350v1 |
350350.v |
350350v |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{6} \cdot 5^{12} \cdot 7^{7} \cdot 11^{3} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$2.019408578$ |
$1$ |
|
$19$ |
$16588800$ |
$2.639412$ |
$1161631688686561/121121000000$ |
$0.88677$ |
$4.38804$ |
$[1, 0, 1, -2682776, 1531164198]$ |
\(y^2+xy+y=x^3-2682776x+1531164198\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 105.8.0.?, $\ldots$ |
$[(662, 6406), (1322, 16526)]$ |
350350.v4 |
350350v2 |
350350.v |
350350v |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{3} \cdot 5^{9} \cdot 7^{8} \cdot 11^{6} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$120120$ |
$96$ |
$1$ |
$2.019408578$ |
$1$ |
|
$14$ |
$33177600$ |
$2.985985$ |
$2453765252833439/14670296641000$ |
$0.92223$ |
$4.62155$ |
$[1, 0, 1, 3442224, 7509164198]$ |
\(y^2+xy+y=x^3+3442224x+7509164198\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 105.8.0.?, $\ldots$ |
$[(572, 98026), (7163/2, 1107583/2)]$ |
350350.w1 |
350350w2 |
350350.w |
350350w |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{4} \cdot 5^{3} \cdot 7^{6} \cdot 11^{10} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$0.664507611$ |
$1$ |
|
$8$ |
$19660800$ |
$2.726471$ |
$149867676441074717/70134796121104$ |
$1.04782$ |
$4.39051$ |
$[1, 0, 1, -2711196, 751371338]$ |
\(y^2+xy+y=x^3-2711196x+751371338\) |
2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? |
$[(1768, 37654)]$ |
350350.w2 |
350350w1 |
350350.w |
350350w |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 5^{3} \cdot 7^{6} \cdot 11^{5} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$220$ |
$12$ |
$0$ |
$0.332253805$ |
$1$ |
|
$11$ |
$9830400$ |
$2.379898$ |
$1634150614962403/1177543068416$ |
$1.03364$ |
$4.03657$ |
$[1, 0, 1, 601204, 88891338]$ |
\(y^2+xy+y=x^3+601204x+88891338\) |
2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? |
$[(312, 17361)]$ |
350350.x1 |
350350x1 |
350350.x |
350350x |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{10} \cdot 7^{2} \cdot 11 \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$286$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2649600$ |
$1.853176$ |
$84653909375/65347568$ |
$0.92888$ |
$3.53639$ |
$[1, 1, 0, 71550, 4286500]$ |
\(y^2+xy=x^3+x^2+71550x+4286500\) |
286.2.0.? |
$[ ]$ |
350350.y1 |
350350y2 |
350350.y |
350350y |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{12} \cdot 5^{4} \cdot 7^{2} \cdot 11^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6006$ |
$16$ |
$0$ |
$0.840693964$ |
$1$ |
|
$4$ |
$746496$ |
$1.169788$ |
$-4645129315225/70873088$ |
$0.88713$ |
$3.09575$ |
$[1, 1, 0, -10875, 437725]$ |
\(y^2+xy=x^3+x^2-10875x+437725\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 286.2.0.?, 858.8.0.?, 6006.16.0.? |
$[(70, 125)]$ |
350350.y2 |
350350y1 |
350350.y |
350350y |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6006$ |
$16$ |
$0$ |
$2.522081892$ |
$1$ |
|
$2$ |
$248832$ |
$0.620481$ |
$449986775/386672$ |
$0.81836$ |
$2.36978$ |
$[1, 1, 0, 500, 3200]$ |
\(y^2+xy=x^3+x^2+500x+3200\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 286.2.0.?, 858.8.0.?, 6006.16.0.? |
$[(-4, 36)]$ |
350350.z1 |
350350z1 |
350350.z |
350350z |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{8} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4290$ |
$16$ |
$0$ |
$2.967447064$ |
$1$ |
|
$2$ |
$653184$ |
$1.061840$ |
$-78683185/9152$ |
$0.75364$ |
$2.90994$ |
$[1, 1, 0, -4680, 133120]$ |
\(y^2+xy=x^3+x^2-4680x+133120\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 286.2.0.?, 858.8.0.?, 4290.16.0.? |
$[(24, 176)]$ |
350350.z2 |
350350z2 |
350350.z |
350350z |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{2} \cdot 5^{2} \cdot 7^{8} \cdot 11^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4290$ |
$16$ |
$0$ |
$8.902341194$ |
$1$ |
|
$2$ |
$1959552$ |
$1.611145$ |
$19940297615/11696828$ |
$0.88740$ |
$3.32915$ |
$[1, 1, 0, 29620, -216740]$ |
\(y^2+xy=x^3+x^2+29620x-216740\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 286.2.0.?, 858.8.0.?, 4290.16.0.? |
$[(10314, 1042520)]$ |
350350.ba1 |
350350ba1 |
350350.ba |
350350ba |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2 \cdot 5^{7} \cdot 7^{7} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40040$ |
$2$ |
$0$ |
$0.752544031$ |
$1$ |
|
$4$ |
$921600$ |
$1.224169$ |
$-1/10010$ |
$0.89396$ |
$2.97635$ |
$[1, 1, 0, -25, 206375]$ |
\(y^2+xy=x^3+x^2-25x+206375\) |
40040.2.0.? |
$[(55, 585)]$ |
350350.bb1 |
350350bb1 |
350350.bb |
350350bb |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{5} \cdot 5^{9} \cdot 7^{6} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$440$ |
$2$ |
$0$ |
$14.93891139$ |
$1$ |
|
$0$ |
$4354560$ |
$2.140854$ |
$-90694355177089/7436000$ |
$0.91443$ |
$4.18830$ |
$[1, 1, 0, -1146625, -473096875]$ |
\(y^2+xy=x^3+x^2-1146625x-473096875\) |
440.2.0.? |
$[(50540305/89, 351658350690/89)]$ |
350350.bc1 |
350350bc1 |
350350.bc |
350350bc |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{2} \cdot 5^{3} \cdot 7^{2} \cdot 11^{2} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.854265447$ |
$1$ |
|
$14$ |
$144384$ |
$0.353594$ |
$-15736637/81796$ |
$0.84983$ |
$2.16128$ |
$[1, 1, 0, -95, -1175]$ |
\(y^2+xy=x^3+x^2-95x-1175\) |
20.2.0.a.1 |
$[(80, 675), (15, 25)]$ |
350350.bd1 |
350350bd1 |
350350.bd |
350350bd |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( - 2^{14} \cdot 5^{2} \cdot 7^{9} \cdot 11 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$308$ |
$2$ |
$0$ |
$1.655062009$ |
$1$ |
|
$4$ |
$6623232$ |
$2.271404$ |
$226541935625/5147377664$ |
$0.96801$ |
$3.95739$ |
$[1, 1, 0, 127375, 108286165]$ |
\(y^2+xy=x^3+x^2+127375x+108286165\) |
308.2.0.? |
$[(66, 10783)]$ |