| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 333.a1 |
333c2 |
333.a |
333c |
$2$ |
$2$ |
\( 3^{2} \cdot 37 \) |
\( 3^{3} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$0.480293841$ |
$1$ |
|
$6$ |
$32$ |
$-0.395175$ |
$10503459/1369$ |
$0.93244$ |
$3.35099$ |
$[1, -1, 1, -14, -14]$ |
\(y^2+xy+y=x^3-x^2-14x-14\) |
2.3.0.a.1, 12.6.0.a.1, 148.6.0.?, 444.12.0.? |
$[(-2, 2)]$ |
| 333.a2 |
333c1 |
333.a |
333c |
$2$ |
$2$ |
\( 3^{2} \cdot 37 \) |
\( - 3^{3} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$0.960587683$ |
$1$ |
|
$5$ |
$16$ |
$-0.741748$ |
$9261/37$ |
$0.86736$ |
$2.44570$ |
$[1, -1, 1, 1, -2]$ |
\(y^2+xy+y=x^3-x^2+x-2\) |
2.3.0.a.1, 12.6.0.b.1, 148.6.0.?, 222.6.0.?, 444.12.0.? |
$[(2, 1)]$ |
| 333.b1 |
333a3 |
333.b |
333a |
$3$ |
$9$ |
\( 3^{2} \cdot 37 \) |
\( 3^{6} \cdot 37 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.1 |
3B.1.1 |
$1998$ |
$1296$ |
$43$ |
$6.522928749$ |
$1$ |
|
$2$ |
$180$ |
$0.771388$ |
$727057727488000/37$ |
$1.08598$ |
$7.02664$ |
$[0, 0, 1, -16860, 842625]$ |
\(y^2+y=x^3-16860x+842625\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[(-351/2, 10261/2)]$ |
| 333.b2 |
333a2 |
333.b |
333a |
$3$ |
$9$ |
\( 3^{2} \cdot 37 \) |
\( 3^{6} \cdot 37^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.3 |
3Cs.1.1 |
$1998$ |
$1296$ |
$43$ |
$2.174309583$ |
$1$ |
|
$4$ |
$60$ |
$0.222082$ |
$1404928000/50653$ |
$0.97274$ |
$4.76141$ |
$[0, 0, 1, -210, 1134]$ |
\(y^2+y=x^3-210x+1134\) |
3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 74.2.0.?, 222.48.1.?, 333.216.4.?, $\ldots$ |
$[(6, 9)]$ |
| 333.b3 |
333a1 |
333.b |
333a |
$3$ |
$9$ |
\( 3^{2} \cdot 37 \) |
\( 3^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.2 |
3B.1.2 |
$1998$ |
$1296$ |
$43$ |
$0.724769861$ |
$1$ |
|
$4$ |
$20$ |
$-0.327225$ |
$4096000/37$ |
$0.88268$ |
$3.75631$ |
$[0, 0, 1, -30, -63]$ |
\(y^2+y=x^3-30x-63\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[(-3, 0)]$ |
| 333.c1 |
333b2 |
333.c |
333b |
$2$ |
$2$ |
\( 3^{2} \cdot 37 \) |
\( 3^{9} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$0.899348377$ |
$1$ |
|
$4$ |
$96$ |
$0.154132$ |
$10503459/1369$ |
$0.93244$ |
$4.48590$ |
$[1, -1, 0, -123, 494]$ |
\(y^2+xy=x^3-x^2-123x+494\) |
2.3.0.a.1, 12.6.0.a.1, 148.6.0.?, 444.12.0.? |
$[(-2, 28)]$ |
| 333.c2 |
333b1 |
333.c |
333b |
$2$ |
$2$ |
\( 3^{2} \cdot 37 \) |
\( - 3^{9} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$1.798696754$ |
$1$ |
|
$3$ |
$48$ |
$-0.192442$ |
$9261/37$ |
$0.86736$ |
$3.58061$ |
$[1, -1, 0, 12, 35]$ |
\(y^2+xy=x^3-x^2+12x+35\) |
2.3.0.a.1, 12.6.0.b.1, 148.6.0.?, 222.6.0.?, 444.12.0.? |
$[(2, 7)]$ |
| 333.d1 |
333d1 |
333.d |
333d |
$1$ |
$1$ |
\( 3^{2} \cdot 37 \) |
\( 3^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28$ |
$-0.447236$ |
$110592/37$ |
$0.76978$ |
$3.13444$ |
$[0, 0, 1, -9, -7]$ |
\(y^2+y=x^3-9x-7\) |
74.2.0.? |
$[ ]$ |