Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
302400.a1 |
302400a1 |
302400.a |
302400a |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{17} \cdot 3^{11} \cdot 5^{8} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$5.671186807$ |
$1$ |
|
$2$ |
$18800640$ |
$2.699554$ |
$-51012929526/420175$ |
$0.93734$ |
$4.61146$ |
$[0, 0, 0, -5510700, -5014494000]$ |
\(y^2=x^3-5510700x-5014494000\) |
168.2.0.? |
$[(8410, 737200)]$ |
302400.b1 |
302400b1 |
302400.b |
302400b |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{8} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3110400$ |
$1.919411$ |
$-296595/14$ |
$0.81555$ |
$3.79715$ |
$[0, 0, 0, -175500, -29430000]$ |
\(y^2=x^3-175500x-29430000\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 42.8.0-3.a.1.1, 168.16.0.? |
$[ ]$ |
302400.b2 |
302400b2 |
302400.b |
302400b |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{21} \cdot 3^{11} \cdot 5^{8} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9331200$ |
$2.468716$ |
$4511445/2744$ |
$0.94053$ |
$4.18075$ |
$[0, 0, 0, 904500, -74790000]$ |
\(y^2=x^3+904500x-74790000\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 42.8.0-3.a.1.2, 168.16.0.? |
$[ ]$ |
302400.c1 |
302400c1 |
302400.c |
302400c |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{8} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$4.227459840$ |
$1$ |
|
$2$ |
$460800$ |
$1.035933$ |
$-1866240/2401$ |
$0.86529$ |
$2.84797$ |
$[0, 0, 0, -2250, -73750]$ |
\(y^2=x^3-2250x-73750\) |
6.2.0.a.1 |
$[(449, 9457)]$ |
302400.d1 |
302400d3 |
302400.d |
302400d |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{19} \cdot 3^{11} \cdot 5^{15} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2520$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$26873856$ |
$2.961052$ |
$-3081731187/27343750$ |
$0.97952$ |
$4.66420$ |
$[0, 0, 0, -2724300, -6994458000]$ |
\(y^2=x^3-2724300x-6994458000\) |
3.4.0.a.1, 9.12.0.a.1, 63.36.0.f.2, 84.8.0.?, 120.8.0.?, $\ldots$ |
$[ ]$ |
302400.d2 |
302400d1 |
302400.d |
302400d |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{7} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2520$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2985984$ |
$1.862438$ |
$-21093208947/17920$ |
$0.96082$ |
$3.89895$ |
$[0, 0, 0, -276300, 55942000]$ |
\(y^2=x^3-276300x+55942000\) |
3.4.0.a.1, 9.12.0.a.1, 63.36.0.f.1, 84.8.0.?, 120.8.0.?, $\ldots$ |
$[ ]$ |
302400.d3 |
302400d2 |
302400.d |
302400d |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{9} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$2520$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$8957952$ |
$2.411743$ |
$36926037/343000$ |
$0.97274$ |
$4.13302$ |
$[0, 0, 0, 299700, 244998000]$ |
\(y^2=x^3+299700x+244998000\) |
3.12.0.a.1, 63.36.0.c.1, 84.24.0.?, 120.24.0.?, 252.72.0.?, $\ldots$ |
$[ ]$ |
302400.e1 |
302400e2 |
302400.e |
302400e |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{6} \cdot 3^{5} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2520$ |
$144$ |
$3$ |
$1.141746204$ |
$1$ |
|
$2$ |
$559872$ |
$1.160620$ |
$35184082944/7$ |
$1.08638$ |
$3.45437$ |
$[0, 0, 0, -42600, 3384250]$ |
\(y^2=x^3-42600x+3384250\) |
3.4.0.a.1, 9.12.0.a.1, 42.8.0.b.1, 63.36.0.e.1, 120.8.0.?, $\ldots$ |
$[(119, 3)]$ |
302400.e2 |
302400e3 |
302400.e |
302400e |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{6} \cdot 3^{9} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2520$ |
$144$ |
$3$ |
$10.27571583$ |
$1$ |
|
$0$ |
$559872$ |
$1.160620$ |
$56623104/7$ |
$1.32659$ |
$3.29291$ |
$[0, 0, 0, -21600, -1221750]$ |
\(y^2=x^3-21600x-1221750\) |
3.4.0.a.1, 9.12.0.a.1, 42.8.0.b.1, 63.36.0.e.2, 120.8.0.?, $\ldots$ |
$[(-128489/39, 576809/39)]$ |
302400.e3 |
302400e1 |
302400.e |
302400e |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{6} \cdot 3^{3} \cdot 5^{6} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$2520$ |
$144$ |
$3$ |
$3.425238613$ |
$1$ |
|
$2$ |
$186624$ |
$0.611315$ |
$884736/343$ |
$1.19875$ |
$2.44101$ |
$[0, 0, 0, -600, 3250]$ |
\(y^2=x^3-600x+3250\) |
3.12.0.a.1, 42.24.1.c.1, 63.36.0.b.1, 120.24.0.?, 126.72.3.?, $\ldots$ |
$[(-9, 89)]$ |
302400.f1 |
302400f1 |
302400.f |
302400f |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$5.858306736$ |
$1$ |
|
$0$ |
$1658880$ |
$1.614601$ |
$6912/49$ |
$0.72784$ |
$3.37298$ |
$[0, 0, 0, 13500, -2025000]$ |
\(y^2=x^3+13500x-2025000\) |
30.2.0.a.1 |
$[(9025/4, 870625/4)]$ |
302400.g1 |
302400g2 |
302400.g |
302400g |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1.229146647$ |
$1$ |
|
$4$ |
$4354560$ |
$2.109707$ |
$-14976927675/10976$ |
$1.00906$ |
$4.13906$ |
$[0, 0, 0, -758700, 254523600]$ |
\(y^2=x^3-758700x+254523600\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 42.8.0-3.a.1.2, 168.16.0.? |
$[(490, 640)]$ |
302400.g2 |
302400g1 |
302400.g |
302400g |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{33} \cdot 3^{3} \cdot 5^{4} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$3.687439941$ |
$1$ |
|
$0$ |
$1451520$ |
$1.560402$ |
$20108925/229376$ |
$1.03738$ |
$3.32470$ |
$[0, 0, 0, 9300, 1493200]$ |
\(y^2=x^3+9300x+1493200\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 42.8.0-3.a.1.1, 168.16.0.? |
$[(3514/3, 217088/3)]$ |
302400.h1 |
302400h1 |
302400.h |
302400h |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{4} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1.113310514$ |
$1$ |
|
$2$ |
$193536$ |
$0.489592$ |
$-345600/2401$ |
$0.96129$ |
$2.31474$ |
$[0, 0, 0, -150, 2550]$ |
\(y^2=x^3-150x+2550\) |
6.2.0.a.1 |
$[(1, 49)]$ |
302400.i1 |
302400i1 |
302400.i |
302400i |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.464424408$ |
$1$ |
|
$6$ |
$248832$ |
$0.725563$ |
$-119439360/49$ |
$1.02061$ |
$2.84197$ |
$[0, 0, 0, -3240, 71010]$ |
\(y^2=x^3-3240x+71010\) |
3.4.0.a.1, 6.8.0.b.1, 120.16.0.? |
$[(39, 63), (31, 19)]$ |
302400.i2 |
302400i2 |
302400.i |
302400i |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{11} \cdot 5^{2} \cdot 7^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$13.17981967$ |
$1$ |
|
$4$ |
$746496$ |
$1.274870$ |
$3932160/117649$ |
$1.13028$ |
$3.05663$ |
$[0, 0, 0, 2160, 275130]$ |
\(y^2=x^3+2160x+275130\) |
3.4.0.a.1, 6.8.0.b.1, 120.16.0.? |
$[(-41, 343), (2191, 102581)]$ |
302400.j1 |
302400j1 |
302400.j |
302400j |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$2.322740692$ |
$1$ |
|
$2$ |
$147456$ |
$0.542186$ |
$15360/49$ |
$0.73437$ |
$2.34259$ |
$[0, 0, 0, 240, 3040]$ |
\(y^2=x^3+240x+3040\) |
6.2.0.a.1 |
$[(9, 77)]$ |
302400.k1 |
302400k2 |
302400.k |
302400k |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{33} \cdot 3^{11} \cdot 5^{8} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$29859840$ |
$3.153942$ |
$-17525176203/280985600$ |
$1.00308$ |
$4.84662$ |
$[0, 0, 0, -4862700, -22112946000]$ |
\(y^2=x^3-4862700x-22112946000\) |
3.4.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, 840.16.0.? |
$[ ]$ |
302400.k2 |
302400k1 |
302400.k |
302400k |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{12} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9953280$ |
$2.604637$ |
$212776173/3500000$ |
$1.00469$ |
$4.31934$ |
$[0, 0, 0, 537300, 793854000]$ |
\(y^2=x^3+537300x+793854000\) |
3.4.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, 840.16.0.? |
$[ ]$ |
302400.l1 |
302400l1 |
302400.l |
302400l |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{10} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$1.843616$ |
$-345600/2401$ |
$0.96129$ |
$3.60229$ |
$[0, 0, 0, -33750, 8606250]$ |
\(y^2=x^3-33750x+8606250\) |
6.2.0.a.1 |
$[ ]$ |
302400.m1 |
302400m1 |
302400.m |
302400m |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{8} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$1.917541723$ |
$1$ |
|
$4$ |
$414720$ |
$0.980976$ |
$-119439360/49$ |
$1.02061$ |
$3.08485$ |
$[0, 0, 0, -9000, 328750]$ |
\(y^2=x^3-9000x+328750\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.4 |
$[(225/2, 175/2), (75, 275)]$ |
302400.m2 |
302400m2 |
302400.m |
302400m |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{5} \cdot 5^{8} \cdot 7^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$17.25787550$ |
$1$ |
|
$4$ |
$1244160$ |
$1.530283$ |
$3932160/117649$ |
$1.13028$ |
$3.29950$ |
$[0, 0, 0, 6000, 1273750]$ |
\(y^2=x^3+6000x+1273750\) |
3.4.0.a.1, 6.8.0.b.1, 24.16.0-6.b.1.2 |
$[(-159/2, 7889/2), (-21, 1067)]$ |
302400.n1 |
302400n1 |
302400.n |
302400n |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{14} \cdot 3^{11} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$3.574645980$ |
$1$ |
|
$2$ |
$2211840$ |
$1.896212$ |
$15360/49$ |
$0.73437$ |
$3.63015$ |
$[0, 0, 0, 54000, 10260000]$ |
\(y^2=x^3+54000x+10260000\) |
6.2.0.a.1 |
$[(625, 16975)]$ |
302400.o1 |
302400o1 |
302400.o |
302400o |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{10} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7257600$ |
$2.365120$ |
$-14976927675/10976$ |
$1.00906$ |
$4.38194$ |
$[0, 0, 0, -2107500, 1178350000]$ |
\(y^2=x^3-2107500x+1178350000\) |
3.4.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, 840.16.0.? |
$[ ]$ |
302400.o2 |
302400o2 |
302400.o |
302400o |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{33} \cdot 3^{9} \cdot 5^{10} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$21772800$ |
$2.914425$ |
$20108925/229376$ |
$1.03738$ |
$4.61225$ |
$[0, 0, 0, 2092500, 5039550000]$ |
\(y^2=x^3+2092500x+5039550000\) |
3.4.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, 840.16.0.? |
$[ ]$ |
302400.p1 |
302400p1 |
302400.p |
302400p |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{14} \cdot 3^{11} \cdot 5^{6} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$42$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$35481600$ |
$3.201969$ |
$116634423954432/1977326743$ |
$1.06783$ |
$5.05848$ |
$[0, 0, 0, -36298800, -82933524000]$ |
\(y^2=x^3-36298800x-82933524000\) |
42.2.0.a.1 |
$[ ]$ |
302400.q1 |
302400q1 |
302400.q |
302400q |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$30$ |
$2$ |
$0$ |
$2.192646910$ |
$1$ |
|
$0$ |
$110592$ |
$0.260577$ |
$6912/49$ |
$0.72784$ |
$2.08542$ |
$[0, 0, 0, 60, -600]$ |
\(y^2=x^3+60x-600\) |
30.2.0.a.1 |
$[(25/2, 35/2)]$ |
302400.r1 |
302400r1 |
302400.r |
302400r |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$2.704811132$ |
$1$ |
|
$2$ |
$207360$ |
$0.565385$ |
$-296595/14$ |
$0.81555$ |
$2.50960$ |
$[0, 0, 0, -780, -8720]$ |
\(y^2=x^3-780x-8720\) |
3.4.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, 840.16.0.? |
$[(126, 1376)]$ |
302400.r2 |
302400r2 |
302400.r |
302400r |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{21} \cdot 3^{5} \cdot 5^{2} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$0.901603710$ |
$1$ |
|
$4$ |
$622080$ |
$1.114691$ |
$4511445/2744$ |
$0.94053$ |
$2.89320$ |
$[0, 0, 0, 4020, -22160]$ |
\(y^2=x^3+4020x-22160\) |
3.4.0.a.1, 120.8.0.?, 168.8.0.?, 420.8.0.?, 840.16.0.? |
$[(14, 192)]$ |
302400.s1 |
302400s1 |
302400.s |
302400s |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{2} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$0.780519$ |
$-1866240/2401$ |
$0.86529$ |
$2.60510$ |
$[0, 0, 0, -810, -15930]$ |
\(y^2=x^3-810x-15930\) |
6.2.0.a.1 |
$[ ]$ |
302400.t1 |
302400t1 |
302400.t |
302400t |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{29} \cdot 3^{5} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$8.197037128$ |
$1$ |
|
$0$ |
$12165120$ |
$2.655548$ |
$-1587836426907/313600000$ |
$0.97495$ |
$4.43863$ |
$[0, 0, 0, -2426700, -1685126000]$ |
\(y^2=x^3-2426700x-1685126000\) |
120.2.0.? |
$[(39685/3, 7312375/3)]$ |
302400.u1 |
302400u1 |
302400.u |
302400u |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{16} \cdot 3^{11} \cdot 5^{7} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1548288$ |
$1.711205$ |
$-12/35$ |
$0.88715$ |
$3.47414$ |
$[0, 0, 0, -2700, 3834000]$ |
\(y^2=x^3-2700x+3834000\) |
420.2.0.? |
$[ ]$ |
302400.v1 |
302400v1 |
302400.v |
302400v |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{20} \cdot 3^{5} \cdot 5^{10} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$2.391376417$ |
$1$ |
|
$4$ |
$3870720$ |
$1.999640$ |
$1171875/196$ |
$1.10859$ |
$3.80666$ |
$[0, 0, 0, -187500, -26350000]$ |
\(y^2=x^3-187500x-26350000\) |
12.2.0.a.1 |
$[(-166, 448)]$ |
302400.w1 |
302400w1 |
302400.w |
302400w |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{19} \cdot 3^{5} \cdot 5^{3} \cdot 7^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$0.914353139$ |
$1$ |
|
$16$ |
$811008$ |
$1.286591$ |
$238521/4802$ |
$0.94444$ |
$3.06671$ |
$[0, 0, 0, 2580, -293200]$ |
\(y^2=x^3+2580x-293200\) |
120.2.0.? |
$[(134, 1568), (70, 480)]$ |
302400.x1 |
302400x1 |
302400.x |
302400x |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{15} \cdot 3^{3} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$1.588523188$ |
$1$ |
|
$2$ |
$774144$ |
$1.352654$ |
$-157464/6125$ |
$1.00559$ |
$3.13319$ |
$[0, 0, 0, -2700, 446000]$ |
\(y^2=x^3-2700x+446000\) |
120.2.0.? |
$[(-40, 700)]$ |
302400.y1 |
302400y1 |
302400.y |
302400y |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{20} \cdot 3^{5} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$5.895998662$ |
$1$ |
|
$2$ |
$645120$ |
$1.258791$ |
$-3/28$ |
$1.12894$ |
$3.04396$ |
$[0, 0, 0, -300, -254000]$ |
\(y^2=x^3-300x-254000\) |
84.2.0.? |
$[(4074, 260032)]$ |
302400.z1 |
302400z1 |
302400.z |
302400z |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{19} \cdot 3^{11} \cdot 5^{9} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$120$ |
$2$ |
$0$ |
$2.643151965$ |
$1$ |
|
$2$ |
$12165120$ |
$2.640617$ |
$238521/4802$ |
$0.94444$ |
$4.35426$ |
$[0, 0, 0, 580500, -989550000]$ |
\(y^2=x^3+580500x-989550000\) |
120.2.0.? |
$[(9850, 980000)]$ |
302400.ba1 |
302400ba1 |
302400.ba |
302400ba |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{16} \cdot 3^{3} \cdot 5^{7} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.596304$ |
$-5080955148/1715$ |
$1.10237$ |
$3.67623$ |
$[0, 0, 0, -108300, -13722000]$ |
\(y^2=x^3-108300x-13722000\) |
420.2.0.? |
$[ ]$ |
302400.bb1 |
302400bb1 |
302400.bb |
302400bb |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{7} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$2.238595895$ |
$1$ |
|
$2$ |
$110592$ |
$0.403147$ |
$-1728/35$ |
$0.67018$ |
$2.23064$ |
$[0, 0, 0, -75, 1500]$ |
\(y^2=x^3-75x+1500\) |
420.2.0.? |
$[(40, 250)]$ |
302400.bc1 |
302400bc1 |
302400.bc |
302400bc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{20} \cdot 3^{11} \cdot 5^{4} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2322432$ |
$1.744226$ |
$1171875/196$ |
$1.10859$ |
$3.56379$ |
$[0, 0, 0, -67500, -5691600]$ |
\(y^2=x^3-67500x-5691600\) |
12.2.0.a.1 |
$[ ]$ |
302400.bd1 |
302400bd1 |
302400.bd |
302400bd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{14} \cdot 3^{5} \cdot 5^{13} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$2.608409927$ |
$1$ |
|
$4$ |
$15482880$ |
$2.703598$ |
$-591743611166448/1313046875$ |
$0.98945$ |
$4.66513$ |
$[0, 0, 0, -6930300, 7035698000]$ |
\(y^2=x^3-6930300x+7035698000\) |
420.2.0.? |
$[(-3010, 25000)]$ |
302400.be1 |
302400be1 |
302400.be |
302400be |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{17} \cdot 3^{3} \cdot 5^{8} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.505533$ |
$593190/343$ |
$1.17596$ |
$3.26860$ |
$[0, 0, 0, -19500, -30000]$ |
\(y^2=x^3-19500x-30000\) |
168.2.0.? |
$[ ]$ |
302400.bf1 |
302400bf1 |
302400.bf |
302400bf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{19} \cdot 3^{11} \cdot 5^{9} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$840$ |
$2$ |
$0$ |
$8.155628805$ |
$1$ |
|
$0$ |
$10782720$ |
$2.610779$ |
$-58395327/686$ |
$0.90642$ |
$4.51279$ |
$[0, 0, 0, -3631500, -2690550000]$ |
\(y^2=x^3-3631500x-2690550000\) |
840.2.0.? |
$[(316450/7, 169156000/7)]$ |
302400.bg1 |
302400bg1 |
302400.bg |
302400bg |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{14} \cdot 3^{3} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$4.321046302$ |
$1$ |
|
$2$ |
$552960$ |
$1.288971$ |
$-3732480/49$ |
$0.83724$ |
$3.25135$ |
$[0, 0, 0, -18000, -940000]$ |
\(y^2=x^3-18000x-940000\) |
6.2.0.a.1 |
$[(1625, 65275)]$ |
302400.bh1 |
302400bh1 |
302400.bh |
302400bh |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{15} \cdot 3^{11} \cdot 5^{4} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$2.078590$ |
$4313434200/16807$ |
$0.94515$ |
$4.04966$ |
$[0, 0, 0, -521100, 144298800]$ |
\(y^2=x^3-521100x+144298800\) |
168.2.0.? |
$[ ]$ |
302400.bi1 |
302400bi1 |
302400.bi |
302400bi |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{6} \cdot 3^{5} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$42$ |
$2$ |
$0$ |
$2.852471359$ |
$1$ |
|
$2$ |
$134400$ |
$0.461030$ |
$12288/7$ |
$1.11269$ |
$2.27623$ |
$[0, 0, 0, -300, -250]$ |
\(y^2=x^3-300x-250\) |
42.2.0.a.1 |
$[(-1, 7)]$ |
302400.bj1 |
302400bj1 |
302400.bj |
302400bj |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$840$ |
$2$ |
$0$ |
$1.355333747$ |
$1$ |
|
$4$ |
$5760000$ |
$2.397663$ |
$28652616/16807$ |
$1.06151$ |
$4.11588$ |
$[0, 0, 0, 688500, -25650000]$ |
\(y^2=x^3+688500x-25650000\) |
840.2.0.? |
$[(150, 9000)]$ |
302400.bk1 |
302400bk1 |
302400.bk |
302400bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( 2^{25} \cdot 3^{5} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.516969152$ |
$1$ |
|
$4$ |
$1935360$ |
$1.890722$ |
$15454515/896$ |
$0.87628$ |
$3.75598$ |
$[0, 0, 0, -151500, 21530000]$ |
\(y^2=x^3-151500x+21530000\) |
168.2.0.? |
$[(274, 768)]$ |
302400.bl1 |
302400bl1 |
302400.bl |
302400bl |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{17} \cdot 3^{9} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$168$ |
$2$ |
$0$ |
$1.229218666$ |
$1$ |
|
$4$ |
$921600$ |
$1.452232$ |
$-54/7$ |
$1.01290$ |
$3.22776$ |
$[0, 0, 0, -2700, 810000]$ |
\(y^2=x^3-2700x+810000\) |
168.2.0.? |
$[(0, 900)]$ |
302400.bm1 |
302400bm1 |
302400.bm |
302400bm |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$4.809797094$ |
$1$ |
|
$0$ |
$124416$ |
$0.451547$ |
$69120/49$ |
$0.72784$ |
$2.25119$ |
$[0, 0, 0, 270, -810]$ |
\(y^2=x^3+270x-810\) |
6.2.0.a.1 |
$[(121/4, 2611/4)]$ |