Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
298908.a1 |
298908a1 |
298908.a |
298908a |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{7} \cdot 23^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8294400$ |
$2.495975$ |
$-25494618112/5316979$ |
$0.90517$ |
$4.28882$ |
$[0, 0, 0, -1264944, 638682644]$ |
\(y^2=x^3-1264944x+638682644\) |
38.2.0.a.1 |
$[ ]$ |
298908.b1 |
298908b2 |
298908.b |
298908b |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{9} \cdot 19^{6} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2052864$ |
$1.971178$ |
$949104/529$ |
$1.02705$ |
$3.71693$ |
$[0, 0, 0, -126711, -3333474]$ |
\(y^2=x^3-126711x-3333474\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[ ]$ |
298908.b2 |
298908b1 |
298908.b |
298908b |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{9} \cdot 19^{6} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1026432$ |
$1.624605$ |
$3538944/23$ |
$1.16643$ |
$3.60140$ |
$[0, 0, 0, -77976, 8333685]$ |
\(y^2=x^3-77976x+8333685\) |
2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? |
$[ ]$ |
298908.c1 |
298908c1 |
298908.c |
298908c |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{9} \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.455386951$ |
$1$ |
|
$12$ |
$9953280$ |
$2.762127$ |
$-27482443554816/3628411$ |
$1.12470$ |
$4.81827$ |
$[0, 0, 0, -12970008, 17980758756]$ |
\(y^2=x^3-12970008x+17980758756\) |
38.2.0.a.1 |
$[(5320, 315514), (-1539, 185193)]$ |
298908.d1 |
298908d1 |
298908.d |
298908d |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{9} \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$3.038697301$ |
$1$ |
|
$8$ |
$4976640$ |
$2.421543$ |
$-14155776/3628411$ |
$1.09650$ |
$4.15333$ |
$[0, 0, 0, -103968, -271863324]$ |
\(y^2=x^3-103968x-271863324\) |
38.2.0.a.1 |
$[(2508, 123462), (17556/5, 149454/5)]$ |
298908.e1 |
298908e2 |
298908.e |
298908e |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 19^{6} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2622$ |
$16$ |
$0$ |
$10.04009766$ |
$1$ |
|
$0$ |
$1283040$ |
$1.751562$ |
$-42592000/12167$ |
$0.87185$ |
$3.56914$ |
$[0, 0, 0, -59565, -6838423]$ |
\(y^2=x^3-59565x-6838423\) |
3.4.0.a.1, 46.2.0.a.1, 57.8.0-3.a.1.1, 138.8.0.?, 2622.16.0.? |
$[(430369/6, 282273481/6)]$ |
298908.e2 |
298908e1 |
298908.e |
298908e |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 19^{6} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2622$ |
$16$ |
$0$ |
$3.346699222$ |
$1$ |
|
$0$ |
$427680$ |
$1.202257$ |
$32000/23$ |
$0.71982$ |
$2.96674$ |
$[0, 0, 0, 5415, 75449]$ |
\(y^2=x^3+5415x+75449\) |
3.4.0.a.1, 46.2.0.a.1, 57.8.0-3.a.1.2, 138.8.0.?, 2622.16.0.? |
$[(247/3, 13357/3)]$ |
298908.f1 |
298908f1 |
298908.f |
298908f |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{11} \cdot 19^{8} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1.635187259$ |
$1$ |
|
$2$ |
$4924800$ |
$2.431866$ |
$-311296000/128547$ |
$0.91328$ |
$4.20487$ |
$[0, 0, 0, -823080, -376236727]$ |
\(y^2=x^3-823080x-376236727\) |
6.2.0.a.1 |
$[(2527, 116964)]$ |
298908.g1 |
298908g1 |
298908.g |
298908g |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{11} \cdot 19^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$259200$ |
$0.959648$ |
$-311296000/128547$ |
$0.91328$ |
$2.80364$ |
$[0, 0, 0, -2280, 54853]$ |
\(y^2=x^3-2280x+54853\) |
6.2.0.a.1 |
$[ ]$ |
298908.h1 |
298908h1 |
298908.h |
298908h |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 19^{7} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.225473543$ |
$1$ |
|
$4$ |
$9953280$ |
$2.489864$ |
$11509170176/7327179$ |
$1.05131$ |
$4.20133$ |
$[0, 0, 0, 970368, 116410948]$ |
\(y^2=x^3+970368x+116410948\) |
38.2.0.a.1 |
$[(-76, 6498)]$ |
298908.i1 |
298908i1 |
298908.i |
298908i |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{16} \cdot 19^{9} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$60.21320898$ |
$1$ |
|
$0$ |
$116121600$ |
$3.875820$ |
$-59996263288753291264/214254041139$ |
$1.03336$ |
$5.97596$ |
$[0, 0, 0, -1682531472, -26564047512428]$ |
\(y^2=x^3-1682531472x-26564047512428\) |
38.2.0.a.1 |
$[(73299656589189392058504410717/27031543889, 19845080897822921716178287295038103967261789/27031543889)]$ |
298908.j1 |
298908j1 |
298908.j |
298908j |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 19^{6} \cdot 23 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$4.112831698$ |
$1$ |
|
$6$ |
$598752$ |
$1.200113$ |
$-6912/23$ |
$0.66890$ |
$2.99665$ |
$[0, 0, 0, -3249, 185193]$ |
\(y^2=x^3-3249x+185193\) |
46.2.0.a.1 |
$[(19, 361), (49, 379)]$ |
298908.k1 |
298908k1 |
298908.k |
298908k |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 19^{12} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$16329600$ |
$2.829811$ |
$-198241108860672/1082055263$ |
$0.94395$ |
$4.75581$ |
$[0, 0, 0, -9945189, -12128474763]$ |
\(y^2=x^3-9945189x-12128474763\) |
46.2.0.a.1 |
$[ ]$ |
298908.l1 |
298908l2 |
298908.l |
298908l |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{3} \cdot 19^{6} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$4.230492514$ |
$1$ |
|
$3$ |
$684288$ |
$1.421871$ |
$949104/529$ |
$1.02705$ |
$3.19410$ |
$[0, 0, 0, -14079, 123462]$ |
\(y^2=x^3-14079x+123462\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[(6, 198)]$ |
298908.l2 |
298908l1 |
298908.l |
298908l |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{3} \cdot 19^{6} \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$8.460985029$ |
$1$ |
|
$1$ |
$342144$ |
$1.075298$ |
$3538944/23$ |
$1.16643$ |
$3.07858$ |
$[0, 0, 0, -8664, -308655]$ |
\(y^2=x^3-8664x-308655\) |
2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? |
$[(-8087/12, 48565/12)]$ |
298908.m1 |
298908m1 |
298908.m |
298908m |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{9} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$2.040400993$ |
$1$ |
|
$2$ |
$6220800$ |
$2.431183$ |
$-1682464768/3628411$ |
$0.87633$ |
$4.17201$ |
$[0, 0, 0, -511176, 305829092]$ |
\(y^2=x^3-511176x+305829092\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? |
$[(-152, 19494)]$ |
298908.m2 |
298908m2 |
298908.m |
298908m |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 19^{7} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$114$ |
$16$ |
$0$ |
$6.121202979$ |
$1$ |
|
$2$ |
$18662400$ |
$2.980488$ |
$1093081751552/2812681891$ |
$0.94514$ |
$4.66064$ |
$[0, 0, 0, 4427304, -6656440012]$ |
\(y^2=x^3+4427304x-6656440012\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? |
$[(24757, 3908547)]$ |
298908.n1 |
298908n1 |
298908.n |
298908n |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{14} \cdot 19^{7} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$11059200$ |
$2.663158$ |
$-199794688/65944611$ |
$0.97314$ |
$4.38331$ |
$[0, 0, 0, -251256, -1158704588]$ |
\(y^2=x^3-251256x-1158704588\) |
38.2.0.a.1 |
$[ ]$ |
298908.o1 |
298908o1 |
298908.o |
298908o |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 19^{8} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$5.120126840$ |
$1$ |
|
$2$ |
$3888000$ |
$1.901415$ |
$-5095042816/8303$ |
$0.80612$ |
$3.91701$ |
$[0, 0, 0, -293493, 61285165]$ |
\(y^2=x^3-293493x+61285165\) |
46.2.0.a.1 |
$[(405, 2975)]$ |