Learn more

Refine search


Results (19 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
298908.a1 298908.a \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1264944, 638682644]$ \(y^2=x^3-1264944x+638682644\) 38.2.0.a.1 $[ ]$
298908.b1 298908.b \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -126711, -3333474]$ \(y^2=x^3-126711x-3333474\) 2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? $[ ]$
298908.b2 298908.b \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -77976, 8333685]$ \(y^2=x^3-77976x+8333685\) 2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? $[ ]$
298908.c1 298908.c \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $1.455386951$ $[0, 0, 0, -12970008, 17980758756]$ \(y^2=x^3-12970008x+17980758756\) 38.2.0.a.1 $[(5320, 315514), (-1539, 185193)]$
298908.d1 298908.d \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $3.038697301$ $[0, 0, 0, -103968, -271863324]$ \(y^2=x^3-103968x-271863324\) 38.2.0.a.1 $[(2508, 123462), (17556/5, 149454/5)]$
298908.e1 298908.e \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $10.04009766$ $[0, 0, 0, -59565, -6838423]$ \(y^2=x^3-59565x-6838423\) 3.4.0.a.1, 46.2.0.a.1, 57.8.0-3.a.1.1, 138.8.0.?, 2622.16.0.? $[(430369/6, 282273481/6)]$
298908.e2 298908.e \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $3.346699222$ $[0, 0, 0, 5415, 75449]$ \(y^2=x^3+5415x+75449\) 3.4.0.a.1, 46.2.0.a.1, 57.8.0-3.a.1.2, 138.8.0.?, 2622.16.0.? $[(247/3, 13357/3)]$
298908.f1 298908.f \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.635187259$ $[0, 0, 0, -823080, -376236727]$ \(y^2=x^3-823080x-376236727\) 6.2.0.a.1 $[(2527, 116964)]$
298908.g1 298908.g \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2280, 54853]$ \(y^2=x^3-2280x+54853\) 6.2.0.a.1 $[ ]$
298908.h1 298908.h \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.225473543$ $[0, 0, 0, 970368, 116410948]$ \(y^2=x^3+970368x+116410948\) 38.2.0.a.1 $[(-76, 6498)]$
298908.i1 298908.i \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $60.21320898$ $[0, 0, 0, -1682531472, -26564047512428]$ \(y^2=x^3-1682531472x-26564047512428\) 38.2.0.a.1 $[(73299656589189392058504410717/27031543889, 19845080897822921716178287295038103967261789/27031543889)]$
298908.j1 298908.j \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $4.112831698$ $[0, 0, 0, -3249, 185193]$ \(y^2=x^3-3249x+185193\) 46.2.0.a.1 $[(19, 361), (49, 379)]$
298908.k1 298908.k \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -9945189, -12128474763]$ \(y^2=x^3-9945189x-12128474763\) 46.2.0.a.1 $[ ]$
298908.l1 298908.l \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\Z/2\Z$ $4.230492514$ $[0, 0, 0, -14079, 123462]$ \(y^2=x^3-14079x+123462\) 2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? $[(6, 198)]$
298908.l2 298908.l \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\Z/2\Z$ $8.460985029$ $[0, 0, 0, -8664, -308655]$ \(y^2=x^3-8664x-308655\) 2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? $[(-8087/12, 48565/12)]$
298908.m1 298908.m \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $2.040400993$ $[0, 0, 0, -511176, 305829092]$ \(y^2=x^3-511176x+305829092\) 3.4.0.a.1, 6.8.0-3.a.1.2, 38.2.0.a.1, 57.8.0-3.a.1.2, 114.16.0.? $[(-152, 19494)]$
298908.m2 298908.m \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $6.121202979$ $[0, 0, 0, 4427304, -6656440012]$ \(y^2=x^3+4427304x-6656440012\) 3.4.0.a.1, 6.8.0-3.a.1.1, 38.2.0.a.1, 57.8.0-3.a.1.1, 114.16.0.? $[(24757, 3908547)]$
298908.n1 298908.n \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -251256, -1158704588]$ \(y^2=x^3-251256x-1158704588\) 38.2.0.a.1 $[ ]$
298908.o1 298908.o \( 2^{2} \cdot 3^{2} \cdot 19^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $5.120126840$ $[0, 0, 0, -293493, 61285165]$ \(y^2=x^3-293493x+61285165\) 46.2.0.a.1 $[(405, 2975)]$
  displayed columns for results