Learn more

Refine search


Results (1-50 of 120 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
293046.a1 293046.a \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -860823642, 9719186652180]$ \(y^2+xy=x^3+x^2-860823642x+9719186652180\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? $[ ]$
293046.a2 293046.a \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -48109402, 185235902740]$ \(y^2+xy=x^3+x^2-48109402x+185235902740\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 1326.6.0.?, 2652.12.0.? $[ ]$
293046.b1 293046.b \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $13.55118646$ $[1, 1, 0, -21990959, -39702204771]$ \(y^2+xy=x^3+x^2-21990959x-39702204771\) 3.4.0.a.1, 9.36.0.f.1, 24.8.0.d.1, 72.72.2.?, 663.8.0.?, $\ldots$ $[(9977713, 31512128639)]$
293046.b2 293046.b \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.517062153$ $[1, 1, 0, -271079, -54735819]$ \(y^2+xy=x^3+x^2-271079x-54735819\) 3.4.0.a.1, 9.36.0.f.2, 24.8.0.d.1, 72.72.2.?, 663.8.0.?, $\ldots$ $[(889, 19751)]$
293046.c1 293046.c \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.525171814$ $[1, 1, 0, -3029159, 3551729589]$ \(y^2+xy=x^3+x^2-3029159x+3551729589\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.2, 51.8.0-3.a.1.2, $\ldots$ $[(-1282, 73649)]$
293046.c2 293046.c \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.575515444$ $[1, 1, 0, 25542826, -66421061676]$ \(y^2+xy=x^3+x^2+25542826x-66421061676\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 24.16.0.b.1, 51.8.0-3.a.1.1, $\ldots$ $[(7388, 721298)]$
293046.d1 293046.d \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.218601957$ $[1, 1, 0, -86400746, -110776504236]$ \(y^2+xy=x^3+x^2-86400746x-110776504236\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? $[(-5533, 447659)]$
293046.d2 293046.d \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.437203915$ $[1, 1, 0, 319956374, -854491305260]$ \(y^2+xy=x^3+x^2+319956374x-854491305260\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? $[(33321, 6824692)]$
293046.e1 293046.e \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -47120772156, 3409087856639184]$ \(y^2+xy=x^3+x^2-47120772156x+3409087856639184\) 2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.? $[ ]$
293046.e2 293046.e \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 4892939204, 288400410688720]$ \(y^2+xy=x^3+x^2+4892939204x+288400410688720\) 2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.? $[ ]$
293046.f1 293046.f \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.557614835$ $[1, 1, 0, -1355045721, -19199583562869]$ \(y^2+xy=x^3+x^2-1355045721x-19199583562869\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 16.48.0.l.2, 104.48.0.?, $\ldots$ $[(67253, 13889671)]$
293046.f2 293046.f \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.278807417$ $[1, 1, 0, -84691311, -300012863535]$ \(y^2+xy=x^3+x^2-84691311x-300012863535\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.e.1, 104.96.0.?, 136.96.1.?, $\ldots$ $[(-5299, -308)]$
293046.f3 293046.f \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.557614835$ $[1, 1, 0, -80295621, -332538332121]$ \(y^2+xy=x^3+x^2-80295621x-332538332121\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.2, 208.96.0.?, 272.96.1.?, $\ldots$ $[(62327, 15356709)]$
293046.f4 293046.f \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.139403708$ $[1, 1, 0, -5568891, -4174135155]$ \(y^2+xy=x^3+x^2-5568891x-4174135155\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.h.2, 52.24.0-4.b.1.2, 68.24.0.c.1, $\ldots$ $[(-1087, 24964)]$
293046.f5 293046.f \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.069701854$ $[1, 1, 0, -1661611, 763885309]$ \(y^2+xy=x^3+x^2-1661611x+763885309\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.bb.1, 34.6.0.a.1, $\ldots$ $[(1174, 20221)]$
293046.f6 293046.f \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.278807417$ $[1, 1, 0, 11037049, -24290570871]$ \(y^2+xy=x^3+x^2+11037049x-24290570871\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.y.2, 52.12.0-4.c.1.1, $\ldots$ $[(3371, 224669)]$
293046.g1 293046.g \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -875427101, 9969079137789]$ \(y^2+xy=x^3+x^2-875427101x+9969079137789\) 12.2.0.a.1 $[ ]$
293046.h1 293046.h \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -8597033, -8134944891]$ \(y^2+xy=x^3+x^2-8597033x-8134944891\) 156.2.0.? $[ ]$
293046.i1 293046.i \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.858604749$ $[1, 1, 0, -3890, -48264]$ \(y^2+xy=x^3+x^2-3890x-48264\) 12.2.0.a.1 $[(70, 134)]$
293046.j1 293046.j \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $9.070431565$ $[1, 1, 0, -1124360, -1113123162]$ \(y^2+xy=x^3+x^2-1124360x-1113123162\) 312.2.0.? $[(17810683/2, 75148097589/2)]$
293046.k1 293046.k \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -508435827, -4407437029887]$ \(y^2+xy=x^3+x^2-508435827x-4407437029887\) 156.2.0.? $[ ]$
293046.l1 293046.l \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.470663779$ $[1, 1, 0, -29747, 2097867]$ \(y^2+xy=x^3+x^2-29747x+2097867\) 24.2.0.b.1 $[(31, 1083)]$
293046.m1 293046.m \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -9857, -380427]$ \(y^2+xy=x^3+x^2-9857x-380427\) 156.2.0.? $[ ]$
293046.n1 293046.n \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $118.7644973$ $[1, 1, 0, -15561864087, -736605420884523]$ \(y^2+xy=x^3+x^2-15561864087x-736605420884523\) 156.2.0.? $[(-23146721687107063383334042658264012055766473142139043746/18026241082738014744528465, 19164665310786625769828534483201257711924983011246520722945216345774988277182641953/18026241082738014744528465)]$
293046.o1 293046.o \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -20517994, 35764048468]$ \(y^2+xy=x^3+x^2-20517994x+35764048468\) 2.3.0.a.1, 5.6.0.a.1, 10.36.0.b.1, 12.6.0.f.1, 26.6.0.b.1, $\ldots$ $[ ]$
293046.o2 293046.o \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1282154, 558614100]$ \(y^2+xy=x^3+x^2-1282154x+558614100\) 2.3.0.a.1, 5.6.0.a.1, 10.18.0.a.1, 12.6.0.f.1, 20.36.0.b.2, $\ldots$ $[ ]$
293046.o3 293046.o \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -61129, -2227103]$ \(y^2+xy=x^3+x^2-61129x-2227103\) 2.3.0.a.1, 5.6.0.a.1, 10.36.0.b.2, 12.6.0.f.1, 26.6.0.b.1, $\ldots$ $[ ]$
293046.o4 293046.o \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 14011, -258435]$ \(y^2+xy=x^3+x^2+14011x-258435\) 2.3.0.a.1, 5.6.0.a.1, 10.18.0.a.1, 12.6.0.f.1, 20.36.0.b.1, $\ldots$ $[ ]$
293046.p1 293046.p \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.201394608$ $[1, 1, 0, -8743556, -11920952688]$ \(y^2+xy=x^3+x^2-8743556x-11920952688\) 3.4.0.a.1, 6.8.0-3.a.1.1, 51.8.0-3.a.1.1, 102.16.0.? $[(57112/3, 11626924/3)]$
293046.p2 293046.p \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.733798202$ $[1, 1, 0, 780439, 115472193]$ \(y^2+xy=x^3+x^2+780439x+115472193\) 3.4.0.a.1, 6.8.0-3.a.1.2, 51.8.0-3.a.1.2, 102.16.0.? $[(-722/3, 196447/3)]$
293046.q1 293046.q \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $23.43635657$ $[1, 1, 0, -294063, 523392225]$ \(y^2+xy=x^3+x^2-294063x+523392225\) 6.2.0.a.1 $[(3155897624/4105, 1501015396392297/4105)]$
293046.r1 293046.r \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.992363605$ $[1, 0, 1, -1018, 106472]$ \(y^2+xy+y=x^3-1018x+106472\) 6.2.0.a.1 $[(-9, 343)]$
293046.s1 293046.s \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $10.78023773$ $[1, 0, 1, -4497378721294, -3618910951154612800]$ \(y^2+xy+y=x^3-4497378721294x-3618910951154612800\) 156.2.0.? $[(-2058413483/41, 15775828729237/41)]$
293046.t1 293046.t \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -2848824, -1849096442]$ \(y^2+xy+y=x^3-2848824x-1849096442\) 156.2.0.? $[ ]$
293046.u1 293046.u \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $11.65434130$ $[1, 0, 1, -8597034, 10366999450]$ \(y^2+xy+y=x^3-8597034x+10366999450\) 24.2.0.b.1 $[(63442558/163, 249386582570/163)]$
293046.v1 293046.v \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1759294, -897200380]$ \(y^2+xy+y=x^3-1759294x-897200380\) 156.2.0.? $[ ]$
293046.w1 293046.w \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -868296316, 9847886835386]$ \(y^2+xy+y=x^3-868296316x+9847886835386\) 2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? $[ ]$
293046.w2 293046.w \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -55582076, 146029323962]$ \(y^2+xy+y=x^3-55582076x+146029323962\) 2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? $[ ]$
293046.x1 293046.x \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $15.46748528$ $[1, 0, 1, -3891, -226796]$ \(y^2+xy+y=x^3-3891x-226796\) 312.2.0.? $[(219862912/751, 3130038668732/751)]$
293046.y1 293046.y \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $11.03555635$ $[1, 0, 1, -1124361, -229250864]$ \(y^2+xy+y=x^3-1124361x-229250864\) 12.2.0.a.1 $[(2158909/31, 2726656886/31)]$
293046.z1 293046.z \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -70332058, 271062381644]$ \(y^2+xy+y=x^3-70332058x+271062381644\) 102.2.0.? $[ ]$
293046.ba1 293046.ba \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1018, -479620]$ \(y^2+xy+y=x^3-1018x-479620\) 4.2.0.a.1, 408.4.0.? $[ ]$
293046.bb1 293046.bb \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -29748, -1657550]$ \(y^2+xy+y=x^3-29748x-1657550\) 156.2.0.? $[ ]$
293046.bc1 293046.bc \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $1.546360286$ $[1, 0, 1, -3029160, 2028944374]$ \(y^2+xy+y=x^3-3029160x+2028944374\) 12.2.0.a.1 $[(521, 24075), (1394657/37, 12015999/37)]$
293046.bd1 293046.bd \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -459372, -119899622]$ \(y^2+xy+y=x^3-459372x-119899622\) 102.2.0.? $[ ]$
293046.be1 293046.be \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $24.25434324$ $[1, 0, 1, -6355387302, -195012444329168]$ \(y^2+xy+y=x^3-6355387302x-195012444329168\) 3.4.0.a.1, 9.36.0.f.1, 24.8.0.d.1, 39.8.0-3.a.1.2, 72.72.2.?, $\ldots$ $[(749623289024/1945, 584506981862880903/1945)]$
293046.be2 293046.be \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $8.084781080$ $[1, 0, 1, -78341982, -268368685232]$ \(y^2+xy+y=x^3-78341982x-268368685232\) 3.4.0.a.1, 9.36.0.f.2, 24.8.0.d.1, 39.8.0-3.a.1.1, 72.72.2.?, $\ldots$ $[(4767944/5, 10387769787/5)]$
293046.bf1 293046.bf \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -51737, -5445913]$ \(y^2+xy+y=x^3+x^2-51737x-5445913\) 3.4.0.a.1, 78.8.0.?, 102.8.0.?, 663.8.0.?, 1326.16.0.? $[ ]$
293046.bf2 293046.bf \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 4618, 54335]$ \(y^2+xy+y=x^3+x^2+4618x+54335\) 3.4.0.a.1, 78.8.0.?, 102.8.0.?, 663.8.0.?, 1326.16.0.? $[ ]$
293046.bg1 293046.bg \( 2 \cdot 3 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.287045694$ $[1, 1, 1, -38072577, 72812577807]$ \(y^2+xy+y=x^3+x^2-38072577x+72812577807\) 156.2.0.? $[(16593, 1994184)]$
Next   displayed columns for results