Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
29008.a1 |
29008k1 |
29008.a |
29008k |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$3.824624232$ |
$1$ |
|
$2$ |
$30240$ |
$0.669560$ |
$110592/37$ |
$0.76978$ |
$3.07599$ |
$[0, 0, 0, -784, 5488]$ |
\(y^2=x^3-784x+5488\) |
74.2.0.? |
$[(-31, 1)]$ |
29008.b1 |
29008o1 |
29008.b |
29008o |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{3} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$0.519078696$ |
$1$ |
|
$14$ |
$3840$ |
$-0.047355$ |
$-65536/37$ |
$0.74764$ |
$2.25337$ |
$[0, 1, 0, -37, 111]$ |
\(y^2=x^3+x^2-37x+111\) |
518.2.0.? |
$[(-5, 14), (2, 7)]$ |
29008.c1 |
29008h2 |
29008.c |
29008h |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{11} \cdot 7^{3} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2072$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$28672$ |
$0.820271$ |
$212319530750/37$ |
$0.92212$ |
$3.84841$ |
$[0, 1, 0, -11048, -450668]$ |
\(y^2=x^3+x^2-11048x-450668\) |
2.3.0.a.1, 28.6.0.c.1, 296.6.0.?, 2072.12.0.? |
$[ ]$ |
29008.c2 |
29008h1 |
29008.c |
29008h |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{10} \cdot 7^{3} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2072$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$14336$ |
$0.473697$ |
$-102689500/1369$ |
$0.82913$ |
$3.04021$ |
$[0, 1, 0, -688, -7260]$ |
\(y^2=x^3+x^2-688x-7260\) |
2.3.0.a.1, 14.6.0.b.1, 296.6.0.?, 2072.12.0.? |
$[ ]$ |
29008.d1 |
29008i1 |
29008.d |
29008i |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$2.724622073$ |
$1$ |
|
$2$ |
$10560$ |
$0.616788$ |
$16000000/37$ |
$0.93985$ |
$3.29028$ |
$[0, -1, 0, -1633, 25901]$ |
\(y^2=x^3-x^2-1633x+25901\) |
74.2.0.? |
$[(20, 29)]$ |
29008.e1 |
29008e1 |
29008.e |
29008e |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12096$ |
$0.470715$ |
$351232/37$ |
$0.74527$ |
$2.91863$ |
$[0, -1, 0, -457, 3557]$ |
\(y^2=x^3-x^2-457x+3557\) |
74.2.0.? |
$[ ]$ |
29008.f1 |
29008m1 |
29008.f |
29008m |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15840$ |
$0.425990$ |
$65536/37$ |
$0.98850$ |
$2.75524$ |
$[0, -1, 0, -261, -167]$ |
\(y^2=x^3-x^2-261x-167\) |
74.2.0.? |
$[ ]$ |
29008.g1 |
29008j2 |
29008.g |
29008j |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{12} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$2.231009676$ |
$1$ |
|
$5$ |
$221184$ |
$1.781385$ |
$760798453689/4353013$ |
$0.97619$ |
$4.60821$ |
$[0, 0, 0, -149107, -22051470]$ |
\(y^2=x^3-149107x-22051470\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[(-217, 294)]$ |
29008.g2 |
29008j1 |
29008.g |
29008j |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{12} \cdot 7^{9} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1.115504838$ |
$1$ |
|
$7$ |
$110592$ |
$1.434813$ |
$-15438249/469567$ |
$0.97720$ |
$3.94405$ |
$[0, 0, 0, -4067, -730590]$ |
\(y^2=x^3-4067x-730590\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[(119, 686)]$ |
29008.h1 |
29008c1 |
29008.h |
29008c |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18432$ |
$0.579333$ |
$27648/259$ |
$0.75618$ |
$2.93601$ |
$[0, 0, 0, 196, -4116]$ |
\(y^2=x^3+196x-4116\) |
518.2.0.? |
$[ ]$ |
29008.i1 |
29008a1 |
29008.i |
29008a |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{4} \cdot 7^{8} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10752$ |
$0.538042$ |
$6912000/1813$ |
$0.92588$ |
$2.93877$ |
$[0, 0, 0, -490, 3087]$ |
\(y^2=x^3-490x+3087\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[ ]$ |
29008.i2 |
29008a2 |
29008.i |
29008a |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$21504$ |
$0.884616$ |
$6750000/9583$ |
$0.85629$ |
$3.24267$ |
$[0, 0, 0, 1225, 19894]$ |
\(y^2=x^3+1225x+19894\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[ ]$ |
29008.j1 |
29008b1 |
29008.j |
29008b |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{13} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$387072$ |
$2.346493$ |
$-15283295882302464/41714923579$ |
$1.00656$ |
$5.30308$ |
$[0, 0, 0, -1608572, 787101308]$ |
\(y^2=x^3-1608572x+787101308\) |
518.2.0.? |
$[ ]$ |
29008.k1 |
29008d1 |
29008.k |
29008d |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{4} \cdot 7^{8} \cdot 37^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$25$ |
$5$ |
$1$ |
$235008$ |
$1.880695$ |
$33256413948450816/2481997$ |
$1.11932$ |
$5.10846$ |
$[0, 0, 0, -827218, -289586325]$ |
\(y^2=x^3-827218x-289586325\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[ ]$ |
29008.k2 |
29008d2 |
29008.k |
29008d |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{7} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$25$ |
$5$ |
$1$ |
$470016$ |
$2.227268$ |
$-2065624967846736/17960084863$ |
$1.06882$ |
$5.10930$ |
$[0, 0, 0, -825503, -290846850]$ |
\(y^2=x^3-825503x-290846850\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[ ]$ |
29008.l1 |
29008l3 |
29008.l |
29008l |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$27972$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$163296$ |
$1.888184$ |
$727057727488000/37$ |
$1.08598$ |
$5.27606$ |
$[0, 1, 0, -1468693, -685575101]$ |
\(y^2=x^3+x^2-1468693x-685575101\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 84.8.0.?, $\ldots$ |
$[ ]$ |
29008.l2 |
29008l2 |
29008.l |
29008l |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{6} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$27972$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$54432$ |
$1.338877$ |
$1404928000/50653$ |
$0.97274$ |
$3.99564$ |
$[0, 1, 0, -18293, -928285]$ |
\(y^2=x^3+x^2-18293x-928285\) |
3.12.0.a.1, 9.36.0.b.1, 74.2.0.?, 84.24.0.?, 222.24.1.?, $\ldots$ |
$[ ]$ |
29008.l3 |
29008l1 |
29008.l |
29008l |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$27972$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$18144$ |
$0.789572$ |
$4096000/37$ |
$0.88268$ |
$3.42751$ |
$[0, 1, 0, -2613, 50147]$ |
\(y^2=x^3+x^2-2613x+50147\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 84.8.0.?, $\ldots$ |
$[ ]$ |
29008.m1 |
29008f2 |
29008.m |
29008f |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{11} \cdot 7^{9} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2072$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$200704$ |
$1.793224$ |
$212319530750/37$ |
$0.92212$ |
$4.98468$ |
$[0, -1, 0, -541368, 153496400]$ |
\(y^2=x^3-x^2-541368x+153496400\) |
2.3.0.a.1, 28.6.0.c.1, 296.6.0.?, 2072.12.0.? |
$[ ]$ |
29008.m2 |
29008f1 |
29008.m |
29008f |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{10} \cdot 7^{9} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2072$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$100352$ |
$1.446651$ |
$-102689500/1369$ |
$0.82913$ |
$4.17648$ |
$[0, -1, 0, -33728, 2422736]$ |
\(y^2=x^3-x^2-33728x+2422736\) |
2.3.0.a.1, 14.6.0.b.1, 296.6.0.?, 2072.12.0.? |
$[ ]$ |
29008.n1 |
29008g2 |
29008.n |
29008g |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{11} \cdot 7^{12} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2072$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$165888$ |
$1.664446$ |
$169556172914/4353013$ |
$0.88931$ |
$4.39466$ |
$[0, -1, 0, -71752, -7207920]$ |
\(y^2=x^3-x^2-71752x-7207920\) |
2.3.0.a.1, 28.6.0.c.1, 296.6.0.?, 2072.12.0.? |
$[ ]$ |
29008.n2 |
29008g1 |
29008.n |
29008g |
$2$ |
$2$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{10} \cdot 7^{9} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2072$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$82944$ |
$1.317873$ |
$415292/469567$ |
$0.92128$ |
$3.80725$ |
$[0, -1, 0, 768, -362032]$ |
\(y^2=x^3-x^2+768x-362032\) |
2.3.0.a.1, 14.6.0.b.1, 296.6.0.?, 2072.12.0.? |
$[ ]$ |
29008.o1 |
29008n1 |
29008.o |
29008n |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 7^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$26880$ |
$0.925600$ |
$-65536/37$ |
$0.74764$ |
$3.38963$ |
$[0, -1, 0, -1829, -41719]$ |
\(y^2=x^3-x^2-1829x-41719\) |
518.2.0.? |
$[ ]$ |