Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2900.a1 |
2900c1 |
2900.a |
2900c |
$2$ |
$2$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( 2^{4} \cdot 5^{6} \cdot 29 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1160$ |
$48$ |
$0$ |
$0.402575139$ |
$1$ |
|
$25$ |
$960$ |
$0.162155$ |
$5619712/29$ |
$0.88985$ |
$3.50845$ |
$[0, 1, 0, -233, 1288]$ |
\(y^2=x^3+x^2-233x+1288\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.2, 58.6.0.a.1, 116.24.0.?, $\ldots$ |
$[(3, 25), (7, 7)]$ |
2900.a2 |
2900c2 |
2900.a |
2900c |
$2$ |
$2$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{8} \cdot 5^{6} \cdot 29^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1160$ |
$48$ |
$0$ |
$0.402575139$ |
$1$ |
|
$27$ |
$1920$ |
$0.508728$ |
$-35152/841$ |
$0.85096$ |
$3.68958$ |
$[0, 1, 0, -108, 2788]$ |
\(y^2=x^3+x^2-108x+2788\) |
2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 116.12.0.?, 232.24.0.?, $\ldots$ |
$[(8, 50), (-12, 50)]$ |
2900.b1 |
2900b1 |
2900.b |
2900b |
$2$ |
$3$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{8} \cdot 5^{6} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1740$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.245399$ |
$-35152/29$ |
$0.71422$ |
$3.33088$ |
$[0, -1, 0, -108, 712]$ |
\(y^2=x^3-x^2-108x+712\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 116.2.0.?, 348.8.0.?, 1740.16.0.? |
$[ ]$ |
2900.b2 |
2900b2 |
2900.b |
2900b |
$2$ |
$3$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{8} \cdot 5^{6} \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1740$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.794705$ |
$19600688/24389$ |
$0.87422$ |
$4.03047$ |
$[0, -1, 0, 892, -11288]$ |
\(y^2=x^3-x^2+892x-11288\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 116.2.0.?, 348.8.0.?, 1740.16.0.? |
$[ ]$ |
2900.c1 |
2900e1 |
2900.c |
2900e |
$2$ |
$2$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( 2^{4} \cdot 5^{8} \cdot 29 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$2.500649449$ |
$1$ |
|
$3$ |
$576$ |
$0.300071$ |
$3538944/725$ |
$0.87494$ |
$3.45044$ |
$[0, 0, 0, -200, -875]$ |
\(y^2=x^3-200x-875\) |
2.3.0.a.1, 20.6.0.b.1, 58.6.0.a.1, 580.12.0.? |
$[(-9, 14)]$ |
2900.c2 |
2900e2 |
2900.c |
2900e |
$2$ |
$2$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{8} \cdot 5^{7} \cdot 29^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$5.001298899$ |
$1$ |
|
$1$ |
$1152$ |
$0.646645$ |
$2122416/4205$ |
$0.84263$ |
$3.84512$ |
$[0, 0, 0, 425, -5250]$ |
\(y^2=x^3+425x-5250\) |
2.3.0.a.1, 20.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[(89/2, 987/2)]$ |
2900.d1 |
2900a1 |
2900.d |
2900a |
$2$ |
$2$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( 2^{4} \cdot 5^{9} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1728$ |
$0.693907$ |
$226492416/105125$ |
$1.15496$ |
$3.97210$ |
$[0, 0, 0, -800, -3875]$ |
\(y^2=x^3-800x-3875\) |
2.3.0.a.1, 10.6.0.a.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
2900.d2 |
2900a2 |
2900.d |
2900a |
$2$ |
$2$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{8} \cdot 5^{12} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$580$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$3456$ |
$1.040482$ |
$623331504/453125$ |
$1.02485$ |
$4.44685$ |
$[0, 0, 0, 2825, -29250]$ |
\(y^2=x^3+2825x-29250\) |
2.3.0.a.1, 20.6.0.c.1, 116.6.0.?, 580.12.0.? |
$[ ]$ |
2900.e1 |
2900d1 |
2900.e |
2900d |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{8} \cdot 5^{6} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$116$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$12960$ |
$1.305517$ |
$-48707390098512/29$ |
$1.02954$ |
$5.86000$ |
$[0, 0, 0, -120775, -16155250]$ |
\(y^2=x^3-120775x-16155250\) |
116.2.0.? |
$[ ]$ |