Learn more

Refine search


Results (1-50 of 99 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
28665.a1 28665.a \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -29253, -3025346]$ \(y^2+y=x^3-29253x-3025346\) 390.2.0.? $[ ]$
28665.b1 28665.b \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -48363, -4095506]$ \(y^2+y=x^3-48363x-4095506\) 390.2.0.? $[ ]$
28665.c1 28665.c \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.120728050$ $[0, 0, 1, -987, 11940]$ \(y^2+y=x^3-987x+11940\) 390.2.0.? $[(23, 37)]$
28665.d1 28665.d \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.579068751$ $[0, 0, 1, -83937, 9611460]$ \(y^2+y=x^3-83937x+9611460\) 390.2.0.? $[(95, 1579)]$
28665.e1 28665.e \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -147, -6260]$ \(y^2+y=x^3-147x-6260\) 390.2.0.? $[ ]$
28665.f1 28665.f \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -694658, 127903402]$ \(y^2+xy+y=x^3-x^2-694658x+127903402\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
28665.f2 28665.f \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -608663, 182871406]$ \(y^2+xy+y=x^3-x^2-608663x+182871406\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
28665.g1 28665.g \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1926518, -1028736894]$ \(y^2+xy+y=x^3-x^2-1926518x-1028736894\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 280.12.0.?, 364.12.0.?, $\ldots$ $[ ]$
28665.g2 28665.g \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -120623, -15990978]$ \(y^2+xy+y=x^3-x^2-120623x-15990978\) 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 260.12.0.?, 364.12.0.?, $\ldots$ $[ ]$
28665.g3 28665.g \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -43448, -36241698]$ \(y^2+xy+y=x^3-x^2-43448x-36241698\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 70.6.0.a.1, 140.12.0.?, $\ldots$ $[ ]$
28665.g4 28665.g \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -12578, 129336]$ \(y^2+xy+y=x^3-x^2-12578x+129336\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 130.6.0.?, 260.12.0.?, $\ldots$ $[ ]$
28665.h1 28665.h \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.948770754$ $[1, -1, 1, -92693, 10881406]$ \(y^2+xy+y=x^3-x^2-92693x+10881406\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[(170, 37), (191, 247)]$
28665.h2 28665.h \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.948770754$ $[1, -1, 1, -6698, 114832]$ \(y^2+xy+y=x^3-x^2-6698x+114832\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[(2, 317), (-40, 583)]$
28665.i1 28665.i \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 2122, -452294]$ \(y^2+xy+y=x^3-x^2+2122x-452294\) 20.2.0.a.1 $[ ]$
28665.j1 28665.j \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.613683136$ $[1, -1, 1, -248513, 47739696]$ \(y^2+xy+y=x^3-x^2-248513x+47739696\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 60.12.0-4.c.1.1, 210.6.0.?, $\ldots$ $[(296, 72)]$
28665.j2 28665.j \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.454732545$ $[1, -1, 1, -102983, -12229248]$ \(y^2+xy+y=x^3-x^2-102983x-12229248\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 120.12.0.?, 156.12.0.?, $\ldots$ $[(-157, 303)]$
28665.j3 28665.j \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.227366272$ $[1, -1, 1, -16988, 601206]$ \(y^2+xy+y=x^3-x^2-16988x+601206\) 2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0-2.a.1.1, 156.12.0.?, 260.12.0.?, $\ldots$ $[(-10, 882)]$
28665.j4 28665.j \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.454732545$ $[1, -1, 1, 2857, 61422]$ \(y^2+xy+y=x^3-x^2+2857x+61422\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 60.12.0-4.c.1.2, 312.12.0.?, $\ldots$ $[(30, 401)]$
28665.k1 28665.k \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.374563019$ $[1, -1, 1, -7441223, 7814741456]$ \(y^2+xy+y=x^3-x^2-7441223x+7814741456\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 120.12.0.?, 156.12.0.?, $\ldots$ $[(1560, 232)]$
28665.k2 28665.k \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.749126038$ $[1, -1, 1, -475628, 116365862]$ \(y^2+xy+y=x^3-x^2-475628x+116365862\) 2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0-2.a.1.1, 156.12.0.?, 260.12.0.?, $\ldots$ $[(58, 9403)]$
28665.k3 28665.k \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.498252077$ $[1, -1, 1, -102983, -10631554]$ \(y^2+xy+y=x^3-x^2-102983x-10631554\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 60.12.0-4.c.1.2, 210.6.0.?, $\ldots$ $[(-122, 385)]$
28665.k4 28665.k \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.498252077$ $[1, -1, 1, 527647, 541353152]$ \(y^2+xy+y=x^3-x^2+527647x+541353152\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 60.12.0-4.c.1.1, 312.12.0.?, $\ldots$ $[(877, 40525)]$
28665.l1 28665.l \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.862069700$ $[1, -1, 1, -4388, 112956]$ \(y^2+xy+y=x^3-x^2-4388x+112956\) 2.3.0.a.1, 364.6.0.?, 420.6.0.?, 780.6.0.?, 5460.12.0.? $[(41, 6), (38, -24)]$
28665.l2 28665.l \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.862069700$ $[1, -1, 1, -293, 1572]$ \(y^2+xy+y=x^3-x^2-293x+1572\) 2.3.0.a.1, 210.6.0.?, 364.6.0.?, 780.6.0.?, 5460.12.0.? $[(2, 30), (65, 471)]$
28665.m1 28665.m \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2059553, -1137129794]$ \(y^2+xy+y=x^3-x^2-2059553x-1137129794\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 140.12.0.?, 420.24.0.?, $\ldots$ $[ ]$
28665.m2 28665.m \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -130178, -17320544]$ \(y^2+xy+y=x^3-x^2-130178x-17320544\) 2.6.0.a.1, 12.12.0-2.a.1.1, 140.12.0.?, 260.12.0.?, 364.12.0.?, $\ldots$ $[ ]$
28665.m3 28665.m \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -22133, 917452]$ \(y^2+xy+y=x^3-x^2-22133x+917452\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 130.6.0.?, 260.12.0.?, $\ldots$ $[ ]$
28665.m4 28665.m \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 70477, -66039578]$ \(y^2+xy+y=x^3-x^2+70477x-66039578\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 182.6.0.?, 280.12.0.?, $\ldots$ $[ ]$
28665.n1 28665.n \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -83, -458]$ \(y^2+xy+y=x^3-x^2-83x-458\) 390.2.0.? $[ ]$
28665.o1 28665.o \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.586496311$ $[1, -1, 1, -265712, 47051736]$ \(y^2+xy+y=x^3-x^2-265712x+47051736\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 56.12.0-4.c.1.5, 84.12.0.?, $\ldots$ $[(156, 2984), (401, 2004)]$
28665.o2 28665.o \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.345985247$ $[1, -1, 1, -65057, -5600136]$ \(y^2+xy+y=x^3-x^2-65057x-5600136\) 2.6.0.a.1, 12.12.0.b.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.2, 84.24.0.?, $\ldots$ $[(-138, 926), (437, 6801)]$
28665.o3 28665.o \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $9.383940988$ $[1, -1, 1, -62852, -6049074]$ \(y^2+xy+y=x^3-x^2-62852x-6049074\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(-144, 74), (431, 6624)]$
28665.o4 28665.o \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.345985247$ $[1, -1, 1, 100318, -29546436]$ \(y^2+xy+y=x^3-x^2+100318x-29546436\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$ $[(464, 10572), (212, 996)]$
28665.p1 28665.p \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -176042, -28385234]$ \(y^2+xy+y=x^3-x^2-176042x-28385234\) 2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? $[ ]$
28665.p2 28665.p \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -10667, -469934]$ \(y^2+xy+y=x^3-x^2-10667x-469934\) 2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? $[ ]$
28665.q1 28665.q \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -214997, -38314006]$ \(y^2+xy+y=x^3-x^2-214997x-38314006\) 2.3.0.a.1, 364.6.0.?, 420.6.0.?, 780.6.0.?, 5460.12.0.? $[ ]$
28665.q2 28665.q \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -14342, -510604]$ \(y^2+xy+y=x^3-x^2-14342x-510604\) 2.3.0.a.1, 210.6.0.?, 364.6.0.?, 780.6.0.?, 5460.12.0.? $[ ]$
28665.r1 28665.r \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.499483678$ $[1, -1, 1, 43, 1306]$ \(y^2+xy+y=x^3-x^2+43x+1306\) 20.2.0.a.1 $[(-4, 34)]$
28665.s1 28665.s \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.656887869$ $[1, -1, 1, -4052, 165106]$ \(y^2+xy+y=x^3-x^2-4052x+165106\) 390.2.0.? $[(34, 239)]$
28665.t1 28665.t \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -6444122, 6264438394]$ \(y^2+xy+y=x^3-x^2-6444122x+6264438394\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
28665.t2 28665.t \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -6434567, 6284029966]$ \(y^2+xy+y=x^3-x^2-6434567x+6284029966\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
28665.u1 28665.u \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -115248, -343320791]$ \(y^2+y=x^3-115248x-343320791\) 390.2.0.? $[ ]$
28665.v1 28665.v \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2058, -36101]$ \(y^2+y=x^3-2058x-36101\) 3.4.0.a.1, 21.8.0-3.a.1.1, 390.8.0.?, 2730.16.0.? $[ ]$
28665.v2 28665.v \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 5292, -192166]$ \(y^2+y=x^3+5292x-192166\) 3.4.0.a.1, 21.8.0-3.a.1.2, 390.8.0.?, 2730.16.0.? $[ ]$
28665.w1 28665.w \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.616724769$ $[0, 0, 1, 42, -72]$ \(y^2+y=x^3+42x-72\) 390.2.0.? $[(2, 4)]$
28665.x1 28665.x \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 5893692, 315295384]$ \(y^2+y=x^3+5893692x+315295384\) 390.2.0.? $[ ]$
28665.y1 28665.y \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/3\Z$ $1.115154456$ $[0, 0, 1, -66738, 6636033]$ \(y^2+y=x^3-66738x+6636033\) 3.8.0-3.a.1.2, 390.16.0.? $[(149, 4)]$
28665.y2 28665.y \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.371718152$ $[0, 0, 1, -588, 14418]$ \(y^2+y=x^3-588x+14418\) 3.8.0-3.a.1.1, 390.16.0.? $[(14, 94)]$
28665.z1 28665.z \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.330399385$ $[0, 0, 1, -2352, 1000935]$ \(y^2+y=x^3-2352x+1000935\) 390.2.0.? $[(53, 1012)]$
28665.ba1 28665.ba \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 2058, 24610]$ \(y^2+y=x^3+2058x+24610\) 390.2.0.? $[ ]$
Next   displayed columns for results