Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
285190.a1 285190.a \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -171273, 27211333]$ \(y^2+xy=x^3+x^2-171273x+27211333\) 3.4.0.a.1, 57.8.0-3.a.1.2, 790.2.0.?, 2370.8.0.?, 45030.16.0.? $[ ]$
285190.a2 285190.a \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1033, 75077]$ \(y^2+xy=x^3+x^2-1033x+75077\) 3.4.0.a.1, 57.8.0-3.a.1.1, 790.2.0.?, 2370.8.0.?, 45030.16.0.? $[ ]$
285190.b1 285190.b \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $5.611270778$ $[1, -1, 0, -419, -7915]$ \(y^2+xy=x^3-x^2-419x-7915\) 40.2.0.a.1 $[(1915/6, 68515/6)]$
285190.c1 285190.c \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/2\Z$ $1.600895973$ $[1, -1, 0, -107674, -13513932]$ \(y^2+xy=x^3-x^2-107674x-13513932\) 2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 30020.12.0.? $[(-188, 334)]$
285190.c2 285190.c \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/2\Z$ $3.201791947$ $[1, -1, 0, -10394, 46900]$ \(y^2+xy=x^3-x^2-10394x+46900\) 2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 15010.6.0.?, 30020.12.0.? $[(271, 3997)]$
285190.d1 285190.d \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -5852419, 5450895093]$ \(y^2+xy=x^3-x^2-5852419x+5450895093\) 2.3.0.a.1, 316.6.0.?, 760.6.0.?, 60040.12.0.? $[ ]$
285190.d2 285190.d \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -365219, 85510933]$ \(y^2+xy=x^3-x^2-365219x+85510933\) 2.3.0.a.1, 158.6.0.?, 760.6.0.?, 60040.12.0.? $[ ]$
285190.e1 285190.e \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -134, -562]$ \(y^2+xy=x^3-x^2-134x-562\) 632.2.0.? $[ ]$
285190.f1 285190.f \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -369, -3084]$ \(y^2+xy+y=x^3-369x-3084\) 790.2.0.? $[ ]$
285190.g1 285190.g \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -153432, -23195344]$ \(y^2+xy=x^3+x^2-153432x-23195344\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[ ]$
285190.g2 285190.g \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -9032, -409024]$ \(y^2+xy=x^3+x^2-9032x-409024\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[ ]$
285190.h1 285190.h \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -34485796, -81020619771]$ \(y^2+xy+y=x^3+x^2-34485796x-81020619771\) 152.2.0.? $[ ]$
285190.i1 285190.i \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $6.251930990$ $[1, 1, 1, -133036, 20885373]$ \(y^2+xy+y=x^3+x^2-133036x+20885373\) 790.2.0.? $[(819, 21087)]$
285190.j1 285190.j \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -5419520, 11141289657]$ \(y^2+xy+y=x^3+x^2-5419520x+11141289657\) 3.4.0.a.1, 24.8.0-3.a.1.5, 57.8.0-3.a.1.2, 152.2.0.?, 456.16.0.? $[ ]$
285190.j2 285190.j \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 582105, -341019293]$ \(y^2+xy+y=x^3+x^2+582105x-341019293\) 3.4.0.a.1, 24.8.0-3.a.1.6, 57.8.0-3.a.1.1, 152.2.0.?, 456.16.0.? $[ ]$
285190.k1 285190.k \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -151327, 55045511]$ \(y^2+xy+y=x^3-x^2-151327x+55045511\) 40.2.0.a.1 $[ ]$
285190.l1 285190.l \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/2\Z$ $1.906478143$ $[1, -1, 1, -38870382, 92886411389]$ \(y^2+xy+y=x^3-x^2-38870382x+92886411389\) 2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 30020.12.0.? $[(3297, 22051)]$
285190.l2 285190.l \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/2\Z$ $3.812956286$ $[1, -1, 1, -3752302, -302925699]$ \(y^2+xy+y=x^3-x^2-3752302x-302925699\) 2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 15010.6.0.?, 30020.12.0.? $[(-1319, 49139)]$
285190.m1 285190.m \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $3.794490998$ $[1, -1, 1, -48442, 4096859]$ \(y^2+xy+y=x^3-x^2-48442x+4096859\) 632.2.0.? $[(-2523/4, 183709/4)]$
285190.n1 285190.n \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\mathsf{trivial}$ $5.731711168$ $[1, 0, 0, -61829741, -187137170479]$ \(y^2+xy=x^3-61829741x-187137170479\) 3.8.0-3.a.1.1, 790.2.0.?, 2370.16.0.? $[(1015402/3, 1019114869/3)]$
285190.n2 285190.n \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/3\Z$ $17.19513350$ $[1, 0, 0, -373101, -517937455]$ \(y^2+xy=x^3-373101x-517937455\) 3.8.0-3.a.1.2, 790.2.0.?, 2370.16.0.? $[(1389412114/333, 51490861613515/333)]$
285190.o1 285190.o \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/2\Z$ $9.165622294$ $[1, 1, 1, -748180, -133574975]$ \(y^2+xy+y=x^3+x^2-748180x-133574975\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(-261167/19, 39862037/19)]$
285190.o2 285190.o \( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) $1$ $\Z/2\Z$ $4.582811147$ $[1, 1, 1, 154320, -15166975]$ \(y^2+xy+y=x^3+x^2+154320x-15166975\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(30523/9, 7029937/9)]$
  displayed columns for results