Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
285190.a1 |
285190a2 |
285190.a |
285190a |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{8} \cdot 5^{3} \cdot 19^{2} \cdot 79^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$45030$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1575936$ |
$1.605551$ |
$-1539172115248992049/15777248000$ |
$0.93830$ |
$3.80280$ |
$[1, 1, 0, -171273, 27211333]$ |
\(y^2+xy=x^3+x^2-171273x+27211333\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 790.2.0.?, 2370.8.0.?, 45030.16.0.? |
$[ ]$ |
285190.a2 |
285190a1 |
285190.a |
285190a |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{24} \cdot 5 \cdot 19^{2} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$45030$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$525312$ |
$1.056246$ |
$-338200477489/6627000320$ |
$0.89494$ |
$2.86501$ |
$[1, 1, 0, -1033, 75077]$ |
\(y^2+xy=x^3+x^2-1033x+75077\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 790.2.0.?, 2370.8.0.?, 45030.16.0.? |
$[ ]$ |
285190.b1 |
285190b1 |
285190.b |
285190b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{11} \cdot 5 \cdot 19^{2} \cdot 79^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$5.611270778$ |
$1$ |
|
$0$ |
$239184$ |
$0.675619$ |
$-22565319201/63907840$ |
$0.85533$ |
$2.50798$ |
$[1, -1, 0, -419, -7915]$ |
\(y^2+xy=x^3-x^2-419x-7915\) |
40.2.0.a.1 |
$[(1915/6, 68515/6)]$ |
285190.c1 |
285190c2 |
285190.c |
285190c |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{10} \cdot 5^{6} \cdot 19^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$30020$ |
$12$ |
$0$ |
$1.600895973$ |
$1$ |
|
$2$ |
$1171200$ |
$1.694143$ |
$20127865382582859/99856000000$ |
$0.97760$ |
$3.69195$ |
$[1, -1, 0, -107674, -13513932]$ |
\(y^2+xy=x^3-x^2-107674x-13513932\) |
2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 30020.12.0.? |
$[(-188, 334)]$ |
285190.c2 |
285190c1 |
285190.c |
285190c |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{20} \cdot 5^{3} \cdot 19^{3} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$30020$ |
$12$ |
$0$ |
$3.201791947$ |
$1$ |
|
$3$ |
$585600$ |
$1.347570$ |
$18106501691979/10354688000$ |
$1.00972$ |
$3.13358$ |
$[1, -1, 0, -10394, 46900]$ |
\(y^2+xy=x^3-x^2-10394x+46900\) |
2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 15010.6.0.?, 30020.12.0.? |
$[(271, 3997)]$ |
285190.d1 |
285190d2 |
285190.d |
285190d |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{5} \cdot 5 \cdot 19^{7} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$60040$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$5990400$ |
$2.356770$ |
$471203364675787281/18972640$ |
$1.00566$ |
$4.64622$ |
$[1, -1, 0, -5852419, 5450895093]$ |
\(y^2+xy=x^3-x^2-5852419x+5450895093\) |
2.3.0.a.1, 316.6.0.?, 760.6.0.?, 60040.12.0.? |
$[ ]$ |
285190.d2 |
285190d1 |
285190.d |
285190d |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{10} \cdot 5^{2} \cdot 19^{8} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$60040$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2995200$ |
$2.010197$ |
$-114515128382481/730086400$ |
$0.96129$ |
$3.98453$ |
$[1, -1, 0, -365219, 85510933]$ |
\(y^2+xy=x^3-x^2-365219x+85510933\) |
2.3.0.a.1, 158.6.0.?, 760.6.0.?, 60040.12.0.? |
$[ ]$ |
285190.e1 |
285190e1 |
285190.e |
285190e |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2 \cdot 5^{2} \cdot 19^{2} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$68544$ |
$0.025221$ |
$740206161/3950$ |
$0.76618$ |
$2.09470$ |
$[1, -1, 0, -134, -562]$ |
\(y^2+xy=x^3-x^2-134x-562\) |
632.2.0.? |
$[ ]$ |
285190.f1 |
285190f1 |
285190.f |
285190f |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{4} \cdot 5 \cdot 19^{4} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$164736$ |
$0.440594$ |
$-42471289/6320$ |
$0.82538$ |
$2.35420$ |
$[1, 0, 1, -369, -3084]$ |
\(y^2+xy+y=x^3-369x-3084\) |
790.2.0.? |
$[ ]$ |
285190.g1 |
285190g2 |
285190.g |
285190g |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{4} \cdot 5 \cdot 19^{6} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1769472$ |
$1.627935$ |
$8490912541201/499280$ |
$0.91378$ |
$3.77653$ |
$[1, 1, 0, -153432, -23195344]$ |
\(y^2+xy=x^3+x^2-153432x-23195344\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
285190.g2 |
285190g1 |
285190.g |
285190g |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{8} \cdot 5^{2} \cdot 19^{6} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$884736$ |
$1.281363$ |
$-1732323601/505600$ |
$0.84355$ |
$3.13255$ |
$[1, 1, 0, -9032, -409024]$ |
\(y^2+xy=x^3+x^2-9032x-409024\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[ ]$ |
285190.h1 |
285190h1 |
285190.h |
285190h |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{5} \cdot 5^{2} \cdot 19^{13} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38304000$ |
$3.238583$ |
$-96410175101019798409/4462922818479200$ |
$0.93875$ |
$5.07596$ |
$[1, 1, 1, -34485796, -81020619771]$ |
\(y^2+xy+y=x^3+x^2-34485796x-81020619771\) |
152.2.0.? |
$[ ]$ |
285190.i1 |
285190i1 |
285190.i |
285190i |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{4} \cdot 5 \cdot 19^{10} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$6.251930990$ |
$1$ |
|
$2$ |
$3129984$ |
$1.912813$ |
$-42471289/6320$ |
$0.82538$ |
$3.76068$ |
$[1, 1, 1, -133036, 20885373]$ |
\(y^2+xy+y=x^3+x^2-133036x+20885373\) |
790.2.0.? |
$[(819, 21087)]$ |
285190.j1 |
285190j2 |
285190.j |
285190j |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{2} \cdot 19^{7} \cdot 79^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25816320$ |
$3.031807$ |
$-374183455611241801/923732330979800$ |
$0.93062$ |
$4.76012$ |
$[1, 1, 1, -5419520, 11141289657]$ |
\(y^2+xy+y=x^3+x^2-5419520x+11141289657\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 57.8.0-3.a.1.2, 152.2.0.?, 456.16.0.? |
$[ ]$ |
285190.j2 |
285190j1 |
285190.j |
285190j |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2 \cdot 5^{6} \cdot 19^{9} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8605440$ |
$2.482502$ |
$463666851952199/1337719343750$ |
$0.89452$ |
$4.20507$ |
$[1, 1, 1, 582105, -341019293]$ |
\(y^2+xy+y=x^3+x^2+582105x-341019293\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 57.8.0-3.a.1.1, 152.2.0.?, 456.16.0.? |
$[ ]$ |
285190.k1 |
285190k1 |
285190.k |
285190k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{11} \cdot 5 \cdot 19^{8} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4544496$ |
$2.147839$ |
$-22565319201/63907840$ |
$0.85533$ |
$3.91445$ |
$[1, -1, 1, -151327, 55045511]$ |
\(y^2+xy+y=x^3-x^2-151327x+55045511\) |
40.2.0.a.1 |
$[ ]$ |
285190.l1 |
285190l2 |
285190.l |
285190l |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{10} \cdot 5^{6} \cdot 19^{9} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$30020$ |
$12$ |
$0$ |
$1.906478143$ |
$1$ |
|
$4$ |
$22252800$ |
$3.166363$ |
$20127865382582859/99856000000$ |
$0.97760$ |
$5.09842$ |
$[1, -1, 1, -38870382, 92886411389]$ |
\(y^2+xy+y=x^3-x^2-38870382x+92886411389\) |
2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 30020.12.0.? |
$[(3297, 22051)]$ |
285190.l2 |
285190l1 |
285190.l |
285190l |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{20} \cdot 5^{3} \cdot 19^{9} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$30020$ |
$12$ |
$0$ |
$3.812956286$ |
$1$ |
|
$3$ |
$11126400$ |
$2.819790$ |
$18106501691979/10354688000$ |
$1.00972$ |
$4.54006$ |
$[1, -1, 1, -3752302, -302925699]$ |
\(y^2+xy+y=x^3-x^2-3752302x-302925699\) |
2.3.0.a.1, 76.6.0.?, 1580.6.0.?, 15010.6.0.?, 30020.12.0.? |
$[(-1319, 49139)]$ |
285190.m1 |
285190m1 |
285190.m |
285190m |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2 \cdot 5^{2} \cdot 19^{8} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$3.794490998$ |
$1$ |
|
$0$ |
$1302336$ |
$1.497440$ |
$740206161/3950$ |
$0.76618$ |
$3.50118$ |
$[1, -1, 1, -48442, 4096859]$ |
\(y^2+xy+y=x^3-x^2-48442x+4096859\) |
632.2.0.? |
$[(-2523/4, 183709/4)]$ |
285190.n1 |
285190n2 |
285190.n |
285190n |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{8} \cdot 5^{3} \cdot 19^{8} \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2370$ |
$16$ |
$0$ |
$5.731711168$ |
$1$ |
|
$0$ |
$29942784$ |
$3.077770$ |
$-1539172115248992049/15777248000$ |
$0.93830$ |
$5.20928$ |
$[1, 0, 0, -61829741, -187137170479]$ |
\(y^2+xy=x^3-61829741x-187137170479\) |
3.8.0-3.a.1.1, 790.2.0.?, 2370.16.0.? |
$[(1015402/3, 1019114869/3)]$ |
285190.n2 |
285190n1 |
285190.n |
285190n |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{24} \cdot 5 \cdot 19^{8} \cdot 79 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2370$ |
$16$ |
$0$ |
$17.19513350$ |
$1$ |
|
$2$ |
$9980928$ |
$2.528465$ |
$-338200477489/6627000320$ |
$0.89494$ |
$4.27149$ |
$[1, 0, 0, -373101, -517937455]$ |
\(y^2+xy=x^3-373101x-517937455\) |
3.8.0-3.a.1.2, 790.2.0.?, 2370.16.0.? |
$[(1389412114/333, 51490861613515/333)]$ |
285190.o1 |
285190o2 |
285190.o |
285190o |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( 2^{2} \cdot 5^{3} \cdot 19^{10} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$9.165622294$ |
$1$ |
|
$0$ |
$7464960$ |
$2.397175$ |
$984510668501641/406666680500$ |
$0.88842$ |
$4.15494$ |
$[1, 1, 1, -748180, -133574975]$ |
\(y^2+xy+y=x^3+x^2-748180x-133574975\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-261167/19, 39862037/19)]$ |
285190.o2 |
285190o1 |
285190.o |
285190o |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 19^{2} \cdot 79 \) |
\( - 2^{4} \cdot 5^{6} \cdot 19^{8} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$4.582811147$ |
$1$ |
|
$1$ |
$3732480$ |
$2.050602$ |
$8639101458359/7129750000$ |
$0.93383$ |
$3.77791$ |
$[1, 1, 1, 154320, -15166975]$ |
\(y^2+xy+y=x^3+x^2+154320x-15166975\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(30523/9, 7029937/9)]$ |