| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 28350.a1 |
28350i1 |
28350.a |
28350i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$840$ |
$32$ |
$0$ |
$1.098228292$ |
$1$ |
|
$4$ |
$62208$ |
$1.057770$ |
$-60698457/200704$ |
$1.01233$ |
$3.51859$ |
$[1, -1, 0, -1842, 79316]$ |
\(y^2+xy=x^3-x^2-1842x+79316\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 15.8.0-3.a.1.2, 60.16.0-12.a.1.1, $\ldots$ |
$[(20, 214)]$ |
$1$ |
| 28350.a2 |
28350i2 |
28350.a |
28350i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$840$ |
$32$ |
$0$ |
$3.294684878$ |
$1$ |
|
$2$ |
$186624$ |
$1.607077$ |
$505636983/1882384$ |
$1.01293$ |
$4.13334$ |
$[1, -1, 0, 16158, -1846684]$ |
\(y^2+xy=x^3-x^2+16158x-1846684\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 15.8.0-3.a.1.1, 60.16.0-12.a.1.3, $\ldots$ |
$[(920, 27666)]$ |
$1$ |
| 28350.b1 |
28350bf1 |
28350.b |
28350bf |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$2.994565694$ |
$1$ |
|
$2$ |
$403200$ |
$2.110279$ |
$-14824914669/4302592$ |
$0.96424$ |
$4.80836$ |
$[1, -1, 0, -249117, 58705541]$ |
\(y^2+xy=x^3-x^2-249117x+58705541\) |
70.2.0.a.1 |
$[(794, 18603)]$ |
$1$ |
| 28350.c1 |
28350z1 |
28350.c |
28350z |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$1.775324$ |
$-726098113449/980000$ |
$0.95584$ |
$4.67755$ |
$[1, -1, 0, -182292, 30037616]$ |
\(y^2+xy=x^3-x^2-182292x+30037616\) |
8.2.0.a.1 |
$[ ]$ |
$1$ |
| 28350.d1 |
28350be1 |
28350.d |
28350be |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{4} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.776368652$ |
$1$ |
|
$4$ |
$78624$ |
$1.228907$ |
$-1617537825/307328$ |
$0.95239$ |
$3.79541$ |
$[1, -1, 0, -8142, -323884]$ |
\(y^2+xy=x^3-x^2-8142x-323884\) |
8.2.0.a.1 |
$[(139, 1033)]$ |
$1$ |
| 28350.e1 |
28350g1 |
28350.e |
28350g |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$0.960576938$ |
$1$ |
|
$4$ |
$10368$ |
$0.224441$ |
$-232997265/28672$ |
$0.90229$ |
$2.64062$ |
$[1, -1, 0, -162, 916]$ |
\(y^2+xy=x^3-x^2-162x+916\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.2, 42.8.0.a.1, 210.16.0.? |
$[(-12, 38)]$ |
$1$ |
| 28350.e2 |
28350g2 |
28350.e |
28350g |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{12} \cdot 5^{2} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$2.881730814$ |
$1$ |
|
$2$ |
$31104$ |
$0.773747$ |
$9304335/5488$ |
$0.98903$ |
$3.16494$ |
$[1, -1, 0, 1038, -2044]$ |
\(y^2+xy=x^3-x^2+1038x-2044\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.1, 42.8.0.a.1, 210.16.0.? |
$[(8, 78)]$ |
$1$ |
| 28350.f1 |
28350f2 |
28350.f |
28350f |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{2} \cdot 3^{10} \cdot 5^{2} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$4.395617145$ |
$1$ |
|
$2$ |
$15552$ |
$0.564274$ |
$-46363545/1372$ |
$0.87525$ |
$3.11214$ |
$[1, -1, 0, -852, -9604]$ |
\(y^2+xy=x^3-x^2-852x-9604\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.1, 42.8.0.a.1, 210.16.0.? |
$[(98, 868)]$ |
$1$ |
| 28350.f2 |
28350f1 |
28350.f |
28350f |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$1.465205715$ |
$1$ |
|
$2$ |
$5184$ |
$0.014968$ |
$663255/448$ |
$0.87045$ |
$2.26440$ |
$[1, -1, 0, 48, -64]$ |
\(y^2+xy=x^3-x^2+48x-64\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.2, 42.8.0.a.1, 210.16.0.? |
$[(8, 24)]$ |
$1$ |
| 28350.g1 |
28350x1 |
28350.g |
28350x |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{12} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$829440$ |
$2.353149$ |
$-7087845946329/1229312000000$ |
$1.08245$ |
$5.02750$ |
$[1, -1, 0, -90042, 180360116]$ |
\(y^2+xy=x^3-x^2-90042x+180360116\) |
3.4.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 24.8.0.a.1, 120.16.0.? |
$[ ]$ |
$1$ |
| 28350.g2 |
28350x2 |
28350.g |
28350x |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{8} \cdot 7^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.902458$ |
$63691039238391/11073029760800$ |
$1.07422$ |
$5.66987$ |
$[1, -1, 0, 809958, -4855139884]$ |
\(y^2+xy=x^3-x^2+809958x-4855139884\) |
3.4.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 24.8.0.a.1, 120.16.0.? |
$[ ]$ |
$1$ |
| 28350.h1 |
28350y2 |
28350.h |
28350y |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{15} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2332800$ |
$2.883480$ |
$-379457971152854841/686000000000$ |
$1.02777$ |
$5.96187$ |
$[1, -1, 0, -14683317, -21686435659]$ |
\(y^2+xy=x^3-x^2-14683317x-21686435659\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 42.8.0-3.a.1.1, 70.2.0.a.1, 210.16.0.? |
$[ ]$ |
$1$ |
| 28350.h2 |
28350y1 |
28350.h |
28350y |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{30} \cdot 3^{6} \cdot 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$777600$ |
$2.334175$ |
$243426478710519/939524096000$ |
$1.03944$ |
$4.98511$ |
$[1, -1, 0, 292683, -145187659]$ |
\(y^2+xy=x^3-x^2+292683x-145187659\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 42.8.0-3.a.1.2, 70.2.0.a.1, 210.16.0.? |
$[ ]$ |
$1$ |
| 28350.i1 |
28350n1 |
28350.i |
28350n |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{8} \cdot 7 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1.067643577$ |
$1$ |
|
$10$ |
$36000$ |
$0.902316$ |
$46363545/7168$ |
$0.88141$ |
$3.40623$ |
$[1, -1, 0, -2367, 38541]$ |
\(y^2+xy=x^3-x^2-2367x+38541\) |
28.2.0.a.1 |
$[(94, 753), (19, 3)]$ |
$1$ |
| 28350.j1 |
28350v1 |
28350.j |
28350v |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{14} \cdot 3^{10} \cdot 5^{10} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1058400$ |
$2.697044$ |
$29236196165625/275365888$ |
$1.08045$ |
$5.66570$ |
$[1, -1, 0, -5341992, -4712123584]$ |
\(y^2+xy=x^3-x^2-5341992x-4712123584\) |
28.2.0.a.1 |
$[ ]$ |
$1$ |
| 28350.k1 |
28350b1 |
28350.k |
28350b |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1.697486857$ |
$1$ |
|
$2$ |
$20736$ |
$0.662266$ |
$-15944049/13720$ |
$0.99378$ |
$3.07701$ |
$[1, -1, 0, -567, 8341]$ |
\(y^2+xy=x^3-x^2-567x+8341\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 168.8.0.?, 280.2.0.?, 840.16.0.? |
$[(9, 58)]$ |
$1$ |
| 28350.k2 |
28350b2 |
28350.k |
28350b |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2 \cdot 3^{12} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$5.092460571$ |
$1$ |
|
$2$ |
$62208$ |
$1.211573$ |
$1367631/1750$ |
$0.83517$ |
$3.62453$ |
$[1, -1, 0, 4683, -136909]$ |
\(y^2+xy=x^3-x^2+4683x-136909\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 168.8.0.?, 280.2.0.?, 840.16.0.? |
$[(779, 21423)]$ |
$1$ |
| 28350.l1 |
28350a1 |
28350.l |
28350a |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$5.524996394$ |
$1$ |
|
$2$ |
$435456$ |
$2.118145$ |
$-4538100638453481/3596615680$ |
$1.02063$ |
$5.10135$ |
$[1, -1, 0, -776067, 263520341]$ |
\(y^2+xy=x^3-x^2-776067x+263520341\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 168.8.0.?, 280.2.0.?, 840.16.0.? |
$[(1409, 43633)]$ |
$1$ |
| 28350.l2 |
28350a2 |
28350.l |
28350a |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{9} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$16.57498918$ |
$1$ |
|
$0$ |
$1306368$ |
$2.667454$ |
$63214524899559/645657712000$ |
$1.03335$ |
$5.38730$ |
$[1, -1, 0, 807933, 1140336341]$ |
\(y^2+xy=x^3-x^2+807933x+1140336341\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 168.8.0.?, 280.2.0.?, 840.16.0.? |
$[(40037249/191, 399351119183/191)]$ |
$1$ |
| 28350.m1 |
28350e1 |
28350.m |
28350e |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{4} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$0.980026736$ |
$1$ |
|
$4$ |
$31104$ |
$0.775106$ |
$-43441281/56000$ |
$1.02277$ |
$3.20020$ |
$[1, -1, 0, -792, 15616]$ |
\(y^2+xy=x^3-x^2-792x+15616\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 42.8.0-3.a.1.2, 70.2.0.a.1, 210.16.0.? |
$[(24, 88)]$ |
$1$ |
| 28350.m2 |
28350e2 |
28350.m |
28350e |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{2} \cdot 3^{12} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$2.940080208$ |
$1$ |
|
$2$ |
$93312$ |
$1.324413$ |
$4019679/6860$ |
$0.86287$ |
$3.77610$ |
$[1, -1, 0, 6708, -296884]$ |
\(y^2+xy=x^3-x^2+6708x-296884\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 42.8.0-3.a.1.1, 70.2.0.a.1, 210.16.0.? |
$[(74, 738)]$ |
$1$ |
| 28350.n1 |
28350d1 |
28350.n |
28350d |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{30} \cdot 3^{4} \cdot 5^{2} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$4.136589480$ |
$1$ |
|
$2$ |
$155520$ |
$1.535240$ |
$-25148941562385/368293445632$ |
$1.05278$ |
$4.07115$ |
$[1, -1, 0, -7722, 1341556]$ |
\(y^2+xy=x^3-x^2-7722x+1341556\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.2, 42.8.0.a.1, 210.16.0.? |
$[(11268, 1190398)]$ |
$1$ |
| 28350.n2 |
28350d2 |
28350.n |
28350d |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{10} \cdot 3^{12} \cdot 5^{2} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$12.40976844$ |
$1$ |
|
$0$ |
$466560$ |
$2.084545$ |
$2743748976015/41322093568$ |
$1.05972$ |
$4.70743$ |
$[1, -1, 0, 69078, -34974604]$ |
\(y^2+xy=x^3-x^2+69078x-34974604\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.1, 42.8.0.a.1, 210.16.0.? |
$[(1363268/11, 1584601658/11)]$ |
$1$ |
| 28350.o1 |
28350w1 |
28350.o |
28350w |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{10} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$116640$ |
$1.541023$ |
$-1812792825/25088$ |
$0.96218$ |
$4.29440$ |
$[1, -1, 0, -48867, 4219541]$ |
\(y^2+xy=x^3-x^2-48867x+4219541\) |
3.4.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 24.8.0.a.1, 120.16.0.? |
$[ ]$ |
$1$ |
| 28350.o2 |
28350w2 |
28350.o |
28350w |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{3} \cdot 3^{10} \cdot 5^{10} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$349920$ |
$2.090328$ |
$1047929175/941192$ |
$0.97728$ |
$4.66726$ |
$[1, -1, 0, 176133, 21094541]$ |
\(y^2+xy=x^3-x^2+176133x+21094541\) |
3.4.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 24.8.0.a.1, 120.16.0.? |
$[ ]$ |
$1$ |
| 28350.p1 |
28350c2 |
28350.p |
28350c |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{2} \cdot 3^{12} \cdot 5^{10} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$19.92298188$ |
$1$ |
|
$0$ |
$155520$ |
$1.768648$ |
$-385956225/28$ |
$0.94392$ |
$4.78416$ |
$[1, -1, 0, -262617, -51737959]$ |
\(y^2+xy=x^3-x^2-262617x-51737959\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.1, 42.8.0.a.1, 210.16.0.? |
$[(558676280/509, 12647072536151/509)]$ |
$1$ |
| 28350.p2 |
28350c1 |
28350.p |
28350c |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{4} \cdot 5^{10} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$6.640993962$ |
$1$ |
|
$2$ |
$51840$ |
$1.219343$ |
$-225/21952$ |
$1.17573$ |
$3.70062$ |
$[1, -1, 0, -117, -200459]$ |
\(y^2+xy=x^3-x^2-117x-200459\) |
3.4.0.a.1, 14.2.0.a.1, 15.8.0-3.a.1.2, 42.8.0.a.1, 210.16.0.? |
$[(2130, 97219)]$ |
$1$ |
| 28350.q1 |
28350ba1 |
28350.q |
28350ba |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{6} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15552$ |
$0.403453$ |
$-185193/56$ |
$0.86004$ |
$2.80889$ |
$[1, -1, 0, -267, 2141]$ |
\(y^2+xy=x^3-x^2-267x+2141\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 56.2.0.b.1, 168.8.0.?, 840.16.0.? |
$[ ]$ |
$1$ |
| 28350.q2 |
28350ba2 |
28350.q |
28350ba |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2 \cdot 3^{10} \cdot 5^{6} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46656$ |
$0.952759$ |
$934407/686$ |
$0.92779$ |
$3.35438$ |
$[1, -1, 0, 1983, -18109]$ |
\(y^2+xy=x^3-x^2+1983x-18109\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 56.2.0.b.1, 168.8.0.?, 840.16.0.? |
$[ ]$ |
$1$ |
| 28350.r1 |
28350h2 |
28350.r |
28350h |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{2} \cdot 3^{12} \cdot 5^{10} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$6.948541074$ |
$1$ |
|
$2$ |
$272160$ |
$1.747448$ |
$4629825/1372$ |
$0.89878$ |
$4.35272$ |
$[1, -1, 0, -60117, -3947959]$ |
\(y^2+xy=x^3-x^2-60117x-3947959\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 28.2.0.a.1, 84.8.0.?, 420.16.0.? |
$[(1340, 47499)]$ |
$1$ |
| 28350.r2 |
28350h1 |
28350.r |
28350h |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{10} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$2.316180358$ |
$1$ |
|
$2$ |
$90720$ |
$1.198141$ |
$1617537825/448$ |
$0.94501$ |
$4.06666$ |
$[1, -1, 0, -22617, 1314541]$ |
\(y^2+xy=x^3-x^2-22617x+1314541\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 28.2.0.a.1, 84.8.0.?, 420.16.0.? |
$[(90, -1)]$ |
$1$ |
| 28350.s1 |
28350bg2 |
28350.s |
28350bg |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{6} \cdot 3^{10} \cdot 5^{4} \cdot 7 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$84$ |
$16$ |
$0$ |
$6.044145075$ |
$1$ |
|
$4$ |
$54432$ |
$0.942729$ |
$1617537825/448$ |
$0.94501$ |
$3.76771$ |
$[1, -1, 0, -8142, -280684]$ |
\(y^2+xy=x^3-x^2-8142x-280684\) |
3.8.0-3.a.1.1, 28.2.0.a.1, 84.16.0.? |
$[(-52, 34), (-205/2, 233/2)]$ |
$1$ |
| 28350.s2 |
28350bg1 |
28350.s |
28350bg |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{4} \cdot 7^{3} \) |
$2$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$84$ |
$16$ |
$0$ |
$0.671571675$ |
$1$ |
|
$32$ |
$18144$ |
$0.393423$ |
$4629825/1372$ |
$0.89878$ |
$2.76789$ |
$[1, -1, 0, -267, 1241]$ |
\(y^2+xy=x^3-x^2-267x+1241\) |
3.8.0-3.a.1.2, 28.2.0.a.1, 84.16.0.? |
$[(4, 13), (5, 1)]$ |
$1$ |
| 28350.t1 |
28350t2 |
28350.t |
28350t |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{30} \cdot 3^{10} \cdot 5^{8} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$42$ |
$16$ |
$0$ |
$3.804675250$ |
$1$ |
|
$0$ |
$2332800$ |
$2.889263$ |
$-25148941562385/368293445632$ |
$1.05278$ |
$5.65598$ |
$[1, -1, 0, -1737492, -4520801584]$ |
\(y^2+xy=x^3-x^2-1737492x-4520801584\) |
3.8.0-3.a.1.1, 14.2.0.a.1, 42.16.0-42.a.1.3 |
$[(18952/3, 889076/3)]$ |
$1$ |
| 28350.t2 |
28350t1 |
28350.t |
28350t |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{8} \cdot 7^{9} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$42$ |
$16$ |
$0$ |
$1.268225083$ |
$1$ |
|
$8$ |
$777600$ |
$2.339958$ |
$2743748976015/41322093568$ |
$1.05972$ |
$5.00639$ |
$[1, -1, 0, 191883, 161791541]$ |
\(y^2+xy=x^3-x^2+191883x+161791541\) |
3.8.0-3.a.1.2, 14.2.0.a.1, 42.16.0-42.a.1.4 |
$[(-422, 2563)]$ |
$1$ |
| 28350.u1 |
28350r2 |
28350.u |
28350r |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{9} \cdot 3^{12} \cdot 5^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.8.0.2 |
3B.1.2 |
$24$ |
$16$ |
$0$ |
$9.968128828$ |
$1$ |
|
$0$ |
$69984$ |
$1.285610$ |
$-1812792825/25088$ |
$0.96218$ |
$3.99545$ |
$[1, -1, 0, -17592, -904384]$ |
\(y^2+xy=x^3-x^2-17592x-904384\) |
3.8.0-3.a.1.1, 8.2.0.a.1, 24.16.0-24.a.1.6 |
$[(53695/6, 12227081/6)]$ |
$1$ |
| 28350.u2 |
28350r1 |
28350.u |
28350r |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{4} \cdot 7^{6} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.8.0.1 |
3B.1.1 |
$24$ |
$16$ |
$0$ |
$3.322709609$ |
$1$ |
|
$4$ |
$23328$ |
$0.736305$ |
$1047929175/941192$ |
$0.97728$ |
$3.08243$ |
$[1, -1, 0, 783, -6459]$ |
\(y^2+xy=x^3-x^2+783x-6459\) |
3.8.0-3.a.1.2, 8.2.0.a.1, 24.16.0-24.a.1.8 |
$[(55/2, 603/2)]$ |
$1$ |
| 28350.v1 |
28350s1 |
28350.v |
28350s |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{4} \cdot 7 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$42$ |
$16$ |
$0$ |
$1.012971749$ |
$1$ |
|
$10$ |
$10368$ |
$0.414623$ |
$-385956225/28$ |
$0.94392$ |
$3.19933$ |
$[1, -1, 0, -1167, 15641]$ |
\(y^2+xy=x^3-x^2-1167x+15641\) |
3.8.0-3.a.1.2, 14.2.0.a.1, 42.16.0-42.a.1.4 |
$[(20, -9)]$ |
$1$ |
| 28350.v2 |
28350s2 |
28350.v |
28350s |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{10} \cdot 5^{4} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$42$ |
$16$ |
$0$ |
$0.337657249$ |
$1$ |
|
$8$ |
$31104$ |
$0.963929$ |
$-225/21952$ |
$1.17573$ |
$3.40167$ |
$[1, -1, 0, -42, 43316]$ |
\(y^2+xy=x^3-x^2-42x+43316\) |
3.8.0-3.a.1.1, 14.2.0.a.1, 42.16.0-42.a.1.3 |
$[(28, 238)]$ |
$1$ |
| 28350.w1 |
28350l1 |
28350.w |
28350l |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{13} \cdot 3^{4} \cdot 5^{7} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$29952$ |
$0.904802$ |
$270722079/286720$ |
$0.90921$ |
$3.26438$ |
$[1, -1, 0, 1458, -19884]$ |
\(y^2+xy=x^3-x^2+1458x-19884\) |
280.2.0.? |
$[ ]$ |
$1$ |
| 28350.x1 |
28350bb1 |
28350.x |
28350bb |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.883118233$ |
$1$ |
|
$2$ |
$64512$ |
$1.130594$ |
$934407/6272$ |
$0.96273$ |
$3.58465$ |
$[1, -1, 0, 1983, 110141]$ |
\(y^2+xy=x^3-x^2+1983x+110141\) |
8.2.0.a.1 |
$[(29, 423)]$ |
$1$ |
| 28350.y1 |
28350k1 |
28350.y |
28350k |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$840$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$80640$ |
$1.346268$ |
$-15590912409/784$ |
$0.99105$ |
$4.30269$ |
$[1, -1, 0, -50667, -4377259]$ |
\(y^2+xy=x^3-x^2-50667x-4377259\) |
4.2.0.a.1, 840.4.0.? |
$[ ]$ |
$1$ |
| 28350.z1 |
28350o1 |
28350.z |
28350o |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{4} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$0.192261799$ |
$1$ |
|
$8$ |
$70560$ |
$1.343021$ |
$29236196165625/275365888$ |
$1.08045$ |
$4.08087$ |
$[1, -1, 0, -23742, 1402516]$ |
\(y^2+xy=x^3-x^2-23742x+1402516\) |
28.2.0.a.1 |
$[(204, 2138)]$ |
$1$ |
| 28350.ba1 |
28350bc1 |
28350.ba |
28350bc |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( 2^{10} \cdot 3^{10} \cdot 5^{2} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$0.828852644$ |
$1$ |
|
$4$ |
$21600$ |
$0.646903$ |
$46363545/7168$ |
$0.88141$ |
$3.10728$ |
$[1, -1, 0, -852, -7984]$ |
\(y^2+xy=x^3-x^2-852x-7984\) |
28.2.0.a.1 |
$[(40, 124)]$ |
$1$ |
| 28350.bb1 |
28350j1 |
28350.bb |
28350j |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{11} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$1.756119$ |
$-165785946489/2800000$ |
$0.94440$ |
$4.53607$ |
$[1, -1, 0, -111417, 14549741]$ |
\(y^2+xy=x^3-x^2-111417x+14549741\) |
280.2.0.? |
$[ ]$ |
$1$ |
| 28350.bc1 |
28350q2 |
28350.bc |
28350q |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$42$ |
$16$ |
$0$ |
$3.807868394$ |
$1$ |
|
$2$ |
$155520$ |
$1.578466$ |
$-232997265/28672$ |
$0.90229$ |
$4.22545$ |
$[1, -1, 0, -36492, -2945584]$ |
\(y^2+xy=x^3-x^2-36492x-2945584\) |
3.8.0-3.a.1.1, 14.2.0.a.1, 42.16.0-42.a.1.3 |
$[(248, 1668)]$ |
$1$ |
| 28350.bc2 |
28350q1 |
28350.bc |
28350q |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 7^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$42$ |
$16$ |
$0$ |
$1.269289464$ |
$1$ |
|
$10$ |
$51840$ |
$1.029160$ |
$9304335/5488$ |
$0.98903$ |
$3.46389$ |
$[1, -1, 0, 2883, 7541]$ |
\(y^2+xy=x^3-x^2+2883x+7541\) |
3.8.0-3.a.1.2, 14.2.0.a.1, 42.16.0-42.a.1.4 |
$[(-2, 43)]$ |
$1$ |
| 28350.bd1 |
28350p1 |
28350.bd |
28350p |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{2} \cdot 3^{4} \cdot 5^{8} \cdot 7^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$42$ |
$16$ |
$0$ |
$1.944623644$ |
$1$ |
|
$8$ |
$25920$ |
$0.819687$ |
$-46363545/1372$ |
$0.87525$ |
$3.41109$ |
$[1, -1, 0, -2367, 46041]$ |
\(y^2+xy=x^3-x^2-2367x+46041\) |
3.8.0-3.a.1.2, 14.2.0.a.1, 42.16.0-42.a.1.4 |
$[(40, 99)]$ |
$1$ |
| 28350.bd2 |
28350p2 |
28350.bd |
28350p |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{12} \cdot 5^{8} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$42$ |
$16$ |
$0$ |
$5.833870933$ |
$1$ |
|
$0$ |
$77760$ |
$1.368994$ |
$663255/448$ |
$0.87045$ |
$3.84923$ |
$[1, -1, 0, 10758, 172916]$ |
\(y^2+xy=x^3-x^2+10758x+172916\) |
3.8.0-3.a.1.1, 14.2.0.a.1, 42.16.0-42.a.1.3 |
$[(-140/3, 1298/3)]$ |
$1$ |
| 28350.be1 |
28350m1 |
28350.be |
28350m |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{7} \cdot 3^{4} \cdot 5^{10} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$131040$ |
$1.484320$ |
$-1617537825/307328$ |
$0.95239$ |
$4.09436$ |
$[1, -1, 0, -22617, 1514541]$ |
\(y^2+xy=x^3-x^2-22617x+1514541\) |
8.2.0.a.1 |
$[ ]$ |
$1$ |