Learn more

Refine search


Results (1-50 of 58 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
28322.a1 28322.a \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4859878, -4001406284]$ \(y^2+xy=x^3-x^2-4859878x-4001406284\) 28.2.0.a.1 $[ ]$
28322.b1 28322.b \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.465911820$ $[1, -1, 0, -441646, 407309524]$ \(y^2+xy=x^3-x^2-441646x+407309524\) 68.2.0.a.1 $[(940, 28202)]$
28322.c1 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -38666906, 92542688844]$ \(y^2+xy+y=x^3-38666906x+92542688844\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ $[ ]$
28322.c2 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2414746, 1448261196]$ \(y^2+xy+y=x^3-2414746x+1448261196\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ $[ ]$
28322.c3 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -503011, 112510710]$ \(y^2+xy+y=x^3-503011x+112510710\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.b.1, 24.72.1.h.1, $\ldots$ $[ ]$
28322.c4 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -148986, -22132078]$ \(y^2+xy+y=x^3-148986x-22132078\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ $[ ]$
28322.c5 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7376, -494070]$ \(y^2+xy+y=x^3-7376x-494070\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ $[ ]$
28322.c6 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 63429, 10324934]$ \(y^2+xy+y=x^3+63429x+10324934\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.c.1, 14.6.0.b.1, $\ldots$ $[ ]$
28322.d1 28322.d \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1307, -20688]$ \(y^2+xy+y=x^3-1307x-20688\) 3.4.0.a.1, 136.2.0.?, 168.8.0.?, 357.8.0.?, 408.8.0.?, $\ldots$ $[ ]$
28322.d2 28322.d \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 8808, 80462]$ \(y^2+xy+y=x^3+8808x+80462\) 3.4.0.a.1, 136.2.0.?, 168.8.0.?, 357.8.0.?, 408.8.0.?, $\ldots$ $[ ]$
28322.e1 28322.e \( 2 \cdot 7^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $1.212674224$ $[1, 1, 0, -711, -6971]$ \(y^2+xy=x^3+x^2-711x-6971\) 28.2.0.a.1 $[(-15, 32), (34, 81)]$
28322.f1 28322.f \( 2 \cdot 7^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.548550196$ $[1, 1, 0, -1306, 22184]$ \(y^2+xy=x^3+x^2-1306x+22184\) 68.2.0.a.1 $[(35, 127), (290, 4768)]$
28322.g1 28322.g \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -115943, -6658989]$ \(y^2+xy=x^3-x^2-115943x-6658989\) 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.? $[ ]$
28322.g2 28322.g \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 25667, -796335]$ \(y^2+xy=x^3-x^2+25667x-796335\) 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.? $[ ]$
28322.h1 28322.h \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $10.02420864$ $[1, 0, 1, -64020, -7801146]$ \(y^2+xy+y=x^3-64020x-7801146\) 68.2.0.a.1 $[(24399/7, 3055149/7)]$
28322.i1 28322.i \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.067361313$ $[1, 0, 1, -205630, -32809472]$ \(y^2+xy+y=x^3-205630x-32809472\) 28.2.0.a.1 $[(-199, 589)]$
28322.j1 28322.j \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.284268248$ $[1, 1, 0, -64019, 7031879]$ \(y^2+xy=x^3+x^2-64019x+7031879\) 3.4.0.a.1, 24.8.0-3.a.1.8, 51.8.0-3.a.1.2, 136.2.0.?, 408.16.0.? $[(2821/4, 66319/4)]$
28322.j2 28322.j \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $15.85280474$ $[1, 1, 0, 431616, -27166936]$ \(y^2+xy=x^3+x^2+431616x-27166936\) 3.4.0.a.1, 24.8.0-3.a.1.7, 51.8.0-3.a.1.1, 136.2.0.?, 408.16.0.? $[(45197117/404, 693935125129/404)]$
28322.k1 28322.k \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1819983, 178748165]$ \(y^2+xy=x^3+x^2-1819983x+178748165\) 2.3.0.a.1, 8.6.0.b.1, 28.6.0.c.1, 56.12.0.k.1 $[ ]$
28322.k2 28322.k \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 445777, 22410725]$ \(y^2+xy=x^3+x^2+445777x+22410725\) 2.3.0.a.1, 8.6.0.c.1, 14.6.0.b.1, 56.12.0.n.1 $[ ]$
28322.l1 28322.l \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -21640663, -139663885411]$ \(y^2+xy=x^3-x^2-21640663x-139663885411\) 68.2.0.a.1 $[ ]$
28322.m1 28322.m \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.948682488$ $[1, -1, 0, -16816, -810496]$ \(y^2+xy=x^3-x^2-16816x-810496\) 28.2.0.a.1 $[(3280/3, 168736/3)]$
28322.n1 28322.n \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.162439570$ $[1, -1, 1, -573, 6885]$ \(y^2+xy+y=x^3-x^2-573x+6885\) 56.2.0.b.1 $[(9, 44)]$
28322.o1 28322.o \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -13165305, -18427029351]$ \(y^2+xy+y=x^3-x^2-13165305x-18427029351\) 4.4.0.a.1, 68.8.0.b.1 $[ ]$
28322.p1 28322.p \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.141694828$ $[1, -1, 1, -930, 11169]$ \(y^2+xy+y=x^3-x^2-930x+11169\) 4.4.0.a.1, 68.8.0.b.1 $[(13, 27)]$
28322.q1 28322.q \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.904801557$ $[1, 0, 0, -9912995, -11989610879]$ \(y^2+xy=x^3-9912995x-11989610879\) 2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? $[(-1812, 5819)]$
28322.q2 28322.q \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.952400778$ $[1, 0, 0, -849955, -35461119]$ \(y^2+xy=x^3-849955x-35461119\) 2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? $[(-146, 9321)]$
28322.r1 28322.r \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.875326853$ $[1, 0, 0, -1600488, 538413406]$ \(y^2+xy=x^3-1600488x+538413406\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ $[(97297/8, 20215067/8)]$
28322.r2 28322.r \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.437663426$ $[1, 0, 0, -1458878, 678012544]$ \(y^2+xy=x^3-1458878x+678012544\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ $[(4519/6, 4801183/6)]$
28322.r3 28322.r \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.291775617$ $[1, 0, 0, -609218, -183032900]$ \(y^2+xy=x^3-609218x-183032900\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ $[(1418, 41774)]$
28322.r4 28322.r \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.145887808$ $[1, 0, 0, -42778, -2111964]$ \(y^2+xy=x^3-42778x-2111964\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ $[(-78, 906)]$
28322.s1 28322.s \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -99422, -12110253]$ \(y^2+xy+y=x^3+x^2-99422x-12110253\) 3.4.0.a.1, 21.8.0-3.a.1.1, 24.8.0-3.a.1.6, 56.2.0.b.1, 168.16.0.? $[ ]$
28322.s2 28322.s \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 42188, -42698013]$ \(y^2+xy+y=x^3+x^2+42188x-42698013\) 3.4.0.a.1, 21.8.0-3.a.1.2, 24.8.0-3.a.1.5, 56.2.0.b.1, 168.16.0.? $[ ]$
28322.t1 28322.t \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.145387976$ $[1, 1, 1, -9458, 294783]$ \(y^2+xy+y=x^3+x^2-9458x+294783\) 28.2.0.a.1 $[(-71, 819)]$
28322.u1 28322.u \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -807472, -274910091]$ \(y^2+xy+y=x^3+x^2-807472x-274910091\) 28.2.0.a.1 $[ ]$
28322.v1 28322.v \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.695671227$ $[1, 1, 1, -57, 139]$ \(y^2+xy+y=x^3+x^2-57x+139\) 28.2.0.a.1 $[(-1, 14)]$
28322.w1 28322.w \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -16936851, 26821483681]$ \(y^2+xy+y=x^3+x^2-16936851x+26821483681\) 28.2.0.a.1 $[ ]$
28322.x1 28322.x \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.674329303$ $[1, -1, 1, 2402, 615213]$ \(y^2+xy+y=x^3-x^2+2402x+615213\) 136.2.0.? $[(81, 1115)]$
28322.y1 28322.y \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.777465967$ $[1, -1, 1, -37225, -2602071]$ \(y^2+xy+y=x^3-x^2-37225x-2602071\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ $[(-123, 384)]$
28322.y2 28322.y \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.554931935$ $[1, -1, 1, 29415, -10945399]$ \(y^2+xy+y=x^3-x^2+29415x-10945399\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ $[(269, 3912)]$
28322.z1 28322.z \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $11.87052175$ $[1, -1, 1, -10757935, -12827005257]$ \(y^2+xy+y=x^3-x^2-10757935x-12827005257\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ $[(1295109/17, 824839986/17)]$
28322.z2 28322.z \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $23.74104350$ $[1, -1, 1, 8501025, -53740739881]$ \(y^2+xy+y=x^3-x^2+8501025x-53740739881\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ $[(19626473717/2261, 2154775401833538/2261)]$
28322.ba1 28322.ba \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 117713, -211253577]$ \(y^2+xy+y=x^3-x^2+117713x-211253577\) 136.2.0.? $[ ]$
28322.bb1 28322.bb \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $11.07497174$ $[1, -1, 1, -7486744, 7883202345]$ \(y^2+xy+y=x^3-x^2-7486744x+7883202345\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 56.24.0-8.k.1.3, 136.24.0.?, $\ldots$ $[(-2236841/90, 72743136247/90)]$
28322.bb2 28322.bb \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $22.14994349$ $[1, -1, 1, -547854, 78338873]$ \(y^2+xy+y=x^3-x^2-547854x+78338873\) 2.6.0.a.1, 8.12.0.a.1, 28.12.0-2.a.1.1, 56.24.0-8.a.1.3, 68.12.0.b.1, $\ldots$ $[(4940289373/2047, 275546624194463/2047)]$
28322.bb3 28322.bb \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $11.07497174$ $[1, -1, 1, -264634, -51489175]$ \(y^2+xy+y=x^3-x^2-264634x-51489175\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.2, 34.6.0.a.1, $\ldots$ $[(603275/23, 401852033/23)]$
28322.bb4 28322.bb \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $44.29988699$ $[1, -1, 1, 1859516, 579071833]$ \(y^2+xy+y=x^3-x^2+1859516x+579071833\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.1, 56.24.0-8.p.1.5, $\ldots$ $[(6434192104671696371/95091338, 40589713659645814730372518785/95091338)]$
28322.bc1 28322.bc \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.807480117$ $[1, 0, 0, -58605, 5455841]$ \(y^2+xy=x^3-58605x+5455841\) 28.2.0.a.1 $[(130, 131)]$
28322.bd1 28322.bd \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -16479, 799133]$ \(y^2+xy=x^3-16479x+799133\) 28.2.0.a.1 $[ ]$
28322.be1 28322.be \( 2 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.127138443$ $[1, 0, 0, -2794, -56120]$ \(y^2+xy=x^3-2794x-56120\) 28.2.0.a.1 $[(-684/5, 2396/5)]$
Next   displayed columns for results