| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 28322.a1 |
28322k1 |
28322.a |
28322k |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 7^{7} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3290112$ |
$2.730888$ |
$53520777/1792$ |
$0.96105$ |
$5.63857$ |
$[1, -1, 0, -4859878, -4001406284]$ |
\(y^2+xy=x^3-x^2-4859878x-4001406284\) |
28.2.0.a.1 |
$[ ]$ |
| 28322.b1 |
28322c1 |
28322.b |
28322c |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{26} \cdot 7^{4} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1.465911820$ |
$1$ |
|
$4$ |
$1797120$ |
$2.486416$ |
$-164384733177/1140850688$ |
$1.05960$ |
$5.18688$ |
$[1, -1, 0, -441646, 407309524]$ |
\(y^2+xy=x^3-x^2-441646x+407309524\) |
68.2.0.a.1 |
$[(940, 28202)]$ |
| 28322.c1 |
28322h6 |
28322.c |
28322h |
$6$ |
$18$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{9} \cdot 7^{8} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$8568$ |
$864$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1327104$ |
$2.802662$ |
$2251439055699625/25088$ |
$1.06489$ |
$6.24550$ |
$[1, 0, 1, -38666906, 92542688844]$ |
\(y^2+xy+y=x^3-38666906x+92542688844\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ |
$[ ]$ |
| 28322.c2 |
28322h5 |
28322.c |
28322h |
$6$ |
$18$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{18} \cdot 7^{7} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$8568$ |
$864$ |
$21$ |
$1$ |
$1$ |
|
$1$ |
$663552$ |
$2.456089$ |
$-548347731625/1835008$ |
$1.02933$ |
$5.43445$ |
$[1, 0, 1, -2414746, 1448261196]$ |
\(y^2+xy+y=x^3-2414746x+1448261196\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ |
$[ ]$ |
| 28322.c3 |
28322h4 |
28322.c |
28322h |
$6$ |
$18$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{3} \cdot 7^{12} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.12.0.1 |
2B, 3Cs |
$8568$ |
$864$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$442368$ |
$2.253357$ |
$4956477625/941192$ |
$1.00821$ |
$4.97481$ |
$[1, 0, 1, -503011, 112510710]$ |
\(y^2+xy+y=x^3-503011x+112510710\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.b.1, 24.72.1.h.1, $\ldots$ |
$[ ]$ |
| 28322.c4 |
28322h2 |
28322.c |
28322h |
$6$ |
$18$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2 \cdot 7^{8} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$8568$ |
$864$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$147456$ |
$1.704050$ |
$128787625/98$ |
$0.96763$ |
$4.61873$ |
$[1, 0, 1, -148986, -22132078]$ |
\(y^2+xy+y=x^3-148986x-22132078\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ |
$[ ]$ |
| 28322.c5 |
28322h1 |
28322.c |
28322h |
$6$ |
$18$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{2} \cdot 7^{7} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$8568$ |
$864$ |
$21$ |
$1$ |
$1$ |
|
$1$ |
$73728$ |
$1.357477$ |
$-15625/28$ |
$1.01712$ |
$3.87669$ |
$[1, 0, 1, -7376, -494070]$ |
\(y^2+xy+y=x^3-7376x-494070\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ |
$[ ]$ |
| 28322.c6 |
28322h3 |
28322.c |
28322h |
$6$ |
$18$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{6} \cdot 7^{9} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.12.0.1 |
2B, 3Cs |
$8568$ |
$864$ |
$21$ |
$1$ |
$1$ |
|
$1$ |
$221184$ |
$1.906782$ |
$9938375/21952$ |
$0.98695$ |
$4.46986$ |
$[1, 0, 1, 63429, 10324934]$ |
\(y^2+xy+y=x^3+63429x+10324934\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.c.1, 14.6.0.b.1, $\ldots$ |
$[ ]$ |
| 28322.d1 |
28322i1 |
28322.d |
28322i |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 7^{2} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$0.762364$ |
$-208537/34$ |
$0.76885$ |
$3.25684$ |
$[1, 0, 1, -1307, -20688]$ |
\(y^2+xy+y=x^3-1307x-20688\) |
3.4.0.a.1, 136.2.0.?, 168.8.0.?, 357.8.0.?, 408.8.0.?, $\ldots$ |
$[ ]$ |
| 28322.d2 |
28322i2 |
28322.d |
28322i |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 7^{2} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$1.311670$ |
$63905303/39304$ |
$0.92407$ |
$3.79110$ |
$[1, 0, 1, 8808, 80462]$ |
\(y^2+xy+y=x^3+8808x+80462\) |
3.4.0.a.1, 136.2.0.?, 168.8.0.?, 357.8.0.?, 408.8.0.?, $\ldots$ |
$[ ]$ |
| 28322.e1 |
28322f1 |
28322.e |
28322f |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 7^{7} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1.212674224$ |
$1$ |
|
$14$ |
$13824$ |
$0.576106$ |
$1171657/112$ |
$0.81333$ |
$3.05479$ |
$[1, 1, 0, -711, -6971]$ |
\(y^2+xy=x^3+x^2-711x-6971\) |
28.2.0.a.1 |
$[(-15, 32), (34, 81)]$ |
| 28322.f1 |
28322e1 |
28322.f |
28322e |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{2} \cdot 7^{2} \cdot 17^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$0.548550196$ |
$1$ |
|
$12$ |
$27648$ |
$0.805069$ |
$-208537/68$ |
$0.77633$ |
$3.27623$ |
$[1, 1, 0, -1306, 22184]$ |
\(y^2+xy=x^3+x^2-1306x+22184\) |
68.2.0.a.1 |
$[(35, 127), (290, 4768)]$ |
| 28322.g1 |
28322d2 |
28322.g |
28322d |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2 \cdot 7^{8} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$952$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$1.938284$ |
$60698457/28322$ |
$0.89781$ |
$4.54535$ |
$[1, -1, 0, -115943, -6658989]$ |
\(y^2+xy=x^3-x^2-115943x-6658989\) |
2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.? |
$[ ]$ |
| 28322.g2 |
28322d1 |
28322.g |
28322d |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{2} \cdot 7^{7} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$952$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$1.591709$ |
$658503/476$ |
$0.89406$ |
$4.10407$ |
$[1, -1, 0, 25667, -796335]$ |
\(y^2+xy=x^3-x^2+25667x-796335\) |
2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.? |
$[ ]$ |
| 28322.h1 |
28322a1 |
28322.h |
28322a |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{2} \cdot 7^{8} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$10.02420864$ |
$1$ |
|
$0$ |
$193536$ |
$1.778025$ |
$-208537/68$ |
$0.77633$ |
$4.41514$ |
$[1, 0, 1, -64020, -7801146]$ |
\(y^2+xy+y=x^3-64020x-7801146\) |
68.2.0.a.1 |
$[(24399/7, 3055149/7)]$ |
| 28322.i1 |
28322l1 |
28322.i |
28322l |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 7^{7} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$3.067361313$ |
$1$ |
|
$2$ |
$235008$ |
$1.992714$ |
$1171657/112$ |
$0.81333$ |
$4.71303$ |
$[1, 0, 1, -205630, -32809472]$ |
\(y^2+xy+y=x^3-205630x-32809472\) |
28.2.0.a.1 |
$[(-199, 589)]$ |
| 28322.j1 |
28322b1 |
28322.j |
28322b |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 7^{8} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$5.284268248$ |
$1$ |
|
$0$ |
$241920$ |
$1.735319$ |
$-208537/34$ |
$0.76885$ |
$4.39576$ |
$[1, 1, 0, -64019, 7031879]$ |
\(y^2+xy=x^3+x^2-64019x+7031879\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 51.8.0-3.a.1.2, 136.2.0.?, 408.16.0.? |
$[(2821/4, 66319/4)]$ |
| 28322.j2 |
28322b2 |
28322.j |
28322b |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 7^{8} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$15.85280474$ |
$1$ |
|
$0$ |
$725760$ |
$2.284626$ |
$63905303/39304$ |
$0.92407$ |
$4.93001$ |
$[1, 1, 0, 431616, -27166936]$ |
\(y^2+xy=x^3+x^2+431616x-27166936\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 51.8.0-3.a.1.1, 136.2.0.?, 408.16.0.? |
$[(45197117/404, 693935125129/404)]$ |
| 28322.k1 |
28322g2 |
28322.k |
28322g |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{5} \cdot 7^{8} \cdot 17^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2211840$ |
$2.637398$ |
$234770924809/130960928$ |
$0.97956$ |
$5.35114$ |
$[1, 1, 0, -1819983, 178748165]$ |
\(y^2+xy=x^3+x^2-1819983x+178748165\) |
2.3.0.a.1, 8.6.0.b.1, 28.6.0.c.1, 56.12.0.k.1 |
$[ ]$ |
| 28322.k2 |
28322g1 |
28322.k |
28322g |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{10} \cdot 7^{7} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$1105920$ |
$2.290821$ |
$3449795831/2071552$ |
$0.94689$ |
$4.93946$ |
$[1, 1, 0, 445777, 22410725]$ |
\(y^2+xy=x^3+x^2+445777x+22410725\) |
2.3.0.a.1, 8.6.0.c.1, 14.6.0.b.1, 56.12.0.n.1 |
$[ ]$ |
| 28322.l1 |
28322j1 |
28322.l |
28322j |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{26} \cdot 7^{10} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$12579840$ |
$3.459370$ |
$-164384733177/1140850688$ |
$1.05960$ |
$6.32580$ |
$[1, -1, 0, -21640663, -139663885411]$ |
\(y^2+xy=x^3-x^2-21640663x-139663885411\) |
68.2.0.a.1 |
$[ ]$ |
| 28322.m1 |
28322m1 |
28322.m |
28322m |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 7^{7} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$4.948682488$ |
$1$ |
|
$0$ |
$193536$ |
$1.314280$ |
$53520777/1792$ |
$0.96105$ |
$3.98033$ |
$[1, -1, 0, -16816, -810496]$ |
\(y^2+xy=x^3-x^2-16816x-810496\) |
28.2.0.a.1 |
$[(3280/3, 168736/3)]$ |
| 28322.n1 |
28322be1 |
28322.n |
28322be |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{5} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$0.162439570$ |
$1$ |
|
$8$ |
$34560$ |
$0.606457$ |
$-610929/224$ |
$0.83608$ |
$3.03914$ |
$[1, -1, 1, -573, 6885]$ |
\(y^2+xy+y=x^3-x^2-573x+6885\) |
56.2.0.b.1 |
$[(9, 44)]$ |
| 28322.o1 |
28322p1 |
28322.o |
28322p |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{10} \cdot 7^{8} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.1 |
|
$68$ |
$8$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3198720$ |
$2.872684$ |
$-369140625/1024$ |
$1.23265$ |
$5.93067$ |
$[1, -1, 1, -13165305, -18427029351]$ |
\(y^2+xy+y=x^3-x^2-13165305x-18427029351\) |
4.4.0.a.1, 68.8.0.b.1 |
$[ ]$ |
| 28322.p1 |
28322bd1 |
28322.p |
28322bd |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{10} \cdot 7^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.1 |
|
$68$ |
$8$ |
$0$ |
$0.141694828$ |
$1$ |
|
$8$ |
$26880$ |
$0.483124$ |
$-369140625/1024$ |
$1.23265$ |
$3.13352$ |
$[1, -1, 1, -930, 11169]$ |
\(y^2+xy+y=x^3-x^2-930x+11169\) |
4.4.0.a.1, 68.8.0.b.1 |
$[(13, 27)]$ |
| 28322.q1 |
28322bb2 |
28322.q |
28322bb |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{7} \cdot 7^{10} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$136$ |
$12$ |
$0$ |
$1.904801557$ |
$1$ |
|
$6$ |
$3096576$ |
$2.795006$ |
$37936442980801/88817792$ |
$0.95838$ |
$5.84717$ |
$[1, 0, 0, -9912995, -11989610879]$ |
\(y^2+xy=x^3-9912995x-11989610879\) |
2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? |
$[(-1812, 5819)]$ |
| 28322.q2 |
28322bb1 |
28322.q |
28322bb |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{14} \cdot 7^{8} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$136$ |
$12$ |
$0$ |
$0.952400778$ |
$1$ |
|
$9$ |
$1548288$ |
$2.448433$ |
$23912763841/13647872$ |
$0.98171$ |
$5.12832$ |
$[1, 0, 0, -849955, -35461119]$ |
\(y^2+xy=x^3-849955x-35461119\) |
2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? |
$[(-146, 9321)]$ |
| 28322.r1 |
28322ba4 |
28322.r |
28322ba |
$4$ |
$6$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2 \cdot 7^{6} \cdot 17^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.4.0.1 |
2B, 3B |
$2856$ |
$96$ |
$1$ |
$6.875326853$ |
$1$ |
|
$0$ |
$995328$ |
$2.569050$ |
$159661140625/48275138$ |
$1.06848$ |
$5.31353$ |
$[1, 0, 0, -1600488, 538413406]$ |
\(y^2+xy=x^3-1600488x+538413406\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ |
$[(97297/8, 20215067/8)]$ |
| 28322.r2 |
28322ba3 |
28322.r |
28322ba |
$4$ |
$6$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 7^{6} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.4.0.1 |
2B, 3B |
$2856$ |
$96$ |
$1$ |
$3.437663426$ |
$1$ |
|
$1$ |
$497664$ |
$2.222477$ |
$120920208625/19652$ |
$0.98564$ |
$5.28642$ |
$[1, 0, 0, -1458878, 678012544]$ |
\(y^2+xy=x^3-1458878x+678012544\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ |
$[(4519/6, 4801183/6)]$ |
| 28322.r3 |
28322ba2 |
28322.r |
28322ba |
$4$ |
$6$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{3} \cdot 7^{6} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.4.0.1 |
2B, 3B |
$2856$ |
$96$ |
$1$ |
$2.291775617$ |
$1$ |
|
$2$ |
$331776$ |
$2.019745$ |
$8805624625/2312$ |
$0.96590$ |
$5.03087$ |
$[1, 0, 0, -609218, -183032900]$ |
\(y^2+xy=x^3-609218x-183032900\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ |
$[(1418, 41774)]$ |
| 28322.r4 |
28322ba1 |
28322.r |
28322ba |
$4$ |
$6$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{6} \cdot 7^{6} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.4.0.1 |
2B, 3B |
$2856$ |
$96$ |
$1$ |
$1.145887808$ |
$1$ |
|
$5$ |
$165888$ |
$1.673170$ |
$3048625/1088$ |
$0.90010$ |
$4.25356$ |
$[1, 0, 0, -42778, -2111964]$ |
\(y^2+xy=x^3-42778x-2111964\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ |
$[(-78, 906)]$ |
| 28322.s1 |
28322bi1 |
28322.s |
28322bi |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{3} \cdot 7^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$145152$ |
$1.564693$ |
$-11060825617/2744$ |
$0.96546$ |
$4.50040$ |
$[1, 1, 1, -99422, -12110253]$ |
\(y^2+xy+y=x^3+x^2-99422x-12110253\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 24.8.0-3.a.1.6, 56.2.0.b.1, 168.16.0.? |
$[ ]$ |
| 28322.s2 |
28322bi2 |
28322.s |
28322bi |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 7^{15} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$435456$ |
$2.113998$ |
$845095823/80707214$ |
$1.05336$ |
$4.74699$ |
$[1, 1, 1, 42188, -42698013]$ |
\(y^2+xy+y=x^3+x^2+42188x-42698013\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 24.8.0-3.a.1.5, 56.2.0.b.1, 168.16.0.? |
$[ ]$ |
| 28322.t1 |
28322x1 |
28322.t |
28322x |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{16} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$0.145387976$ |
$1$ |
|
$10$ |
$55296$ |
$1.252729$ |
$2751936625/458752$ |
$0.92219$ |
$3.81192$ |
$[1, 1, 1, -9458, 294783]$ |
\(y^2+xy+y=x^3+x^2-9458x+294783\) |
28.2.0.a.1 |
$[(-71, 819)]$ |
| 28322.u1 |
28322bh1 |
28322.u |
28322bh |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 7^{9} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$411264$ |
$2.256535$ |
$206839/4$ |
$0.99742$ |
$5.11331$ |
$[1, 1, 1, -807472, -274910091]$ |
\(y^2+xy+y=x^3+x^2-807472x-274910091\) |
28.2.0.a.1 |
$[ ]$ |
| 28322.v1 |
28322y1 |
28322.v |
28322y |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 7^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$0.695671227$ |
$1$ |
|
$2$ |
$3456$ |
$-0.133027$ |
$206839/4$ |
$0.99742$ |
$2.31616$ |
$[1, 1, 1, -57, 139]$ |
\(y^2+xy+y=x^3+x^2-57x+139\) |
28.2.0.a.1 |
$[(-1, 14)]$ |
| 28322.w1 |
28322bj1 |
28322.w |
28322bj |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 7^{7} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1645056$ |
$2.653599$ |
$654699641761/112$ |
$0.96142$ |
$6.00393$ |
$[1, 1, 1, -16936851, 26821483681]$ |
\(y^2+xy+y=x^3+x^2-16936851x+26821483681\) |
28.2.0.a.1 |
$[ ]$ |
| 28322.x1 |
28322s1 |
28322.x |
28322s |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 7^{2} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$136$ |
$2$ |
$0$ |
$0.674329303$ |
$1$ |
|
$4$ |
$89856$ |
$1.407339$ |
$1296351/139264$ |
$1.08366$ |
$3.91991$ |
$[1, -1, 1, 2402, 615213]$ |
\(y^2+xy+y=x^3-x^2+2402x+615213\) |
136.2.0.? |
$[(81, 1115)]$ |
| 28322.y1 |
28322r1 |
28322.y |
28322r |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 7^{10} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.35 |
2B |
$1904$ |
$192$ |
$9$ |
$2.777465967$ |
$1$ |
|
$5$ |
$98304$ |
$1.543419$ |
$9869198625/614656$ |
$1.04980$ |
$4.21287$ |
$[1, -1, 1, -37225, -2602071]$ |
\(y^2+xy+y=x^3-x^2-37225x-2602071\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ |
$[(-123, 384)]$ |
| 28322.y2 |
28322r2 |
28322.y |
28322r |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 7^{14} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.118 |
2B |
$1904$ |
$192$ |
$9$ |
$5.554931935$ |
$1$ |
|
$2$ |
$196608$ |
$1.889992$ |
$4869777375/92236816$ |
$1.12615$ |
$4.48121$ |
$[1, -1, 1, 29415, -10945399]$ |
\(y^2+xy+y=x^3-x^2+29415x-10945399\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ |
$[(269, 3912)]$ |
| 28322.z1 |
28322q1 |
28322.z |
28322q |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 7^{10} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.35 |
2B |
$1904$ |
$192$ |
$9$ |
$11.87052175$ |
$1$ |
|
$1$ |
$1671168$ |
$2.960026$ |
$9869198625/614656$ |
$1.04980$ |
$5.87111$ |
$[1, -1, 1, -10757935, -12827005257]$ |
\(y^2+xy+y=x^3-x^2-10757935x-12827005257\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.cf.1, 34.6.0.a.1, $\ldots$ |
$[(1295109/17, 824839986/17)]$ |
| 28322.z2 |
28322q2 |
28322.z |
28322q |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{4} \cdot 7^{14} \cdot 17^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.1.118 |
2B |
$1904$ |
$192$ |
$9$ |
$23.74104350$ |
$1$ |
|
$0$ |
$3342336$ |
$3.306599$ |
$4869777375/92236816$ |
$1.12615$ |
$6.13945$ |
$[1, -1, 1, 8501025, -53740739881]$ |
\(y^2+xy+y=x^3-x^2+8501025x-53740739881\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bn.1, 68.12.0.l.1, $\ldots$ |
$[(19626473717/2261, 2154775401833538/2261)]$ |
| 28322.ba1 |
28322n1 |
28322.ba |
28322n |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 7^{8} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$136$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$628992$ |
$2.380295$ |
$1296351/139264$ |
$1.08366$ |
$5.05882$ |
$[1, -1, 1, 117713, -211253577]$ |
\(y^2+xy+y=x^3-x^2+117713x-211253577\) |
136.2.0.? |
$[ ]$ |
| 28322.bb1 |
28322t4 |
28322.bb |
28322t |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2 \cdot 7^{8} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$952$ |
$48$ |
$0$ |
$11.07497174$ |
$1$ |
|
$0$ |
$884736$ |
$2.668690$ |
$16342588257633/8185058$ |
$1.11945$ |
$5.76502$ |
$[1, -1, 1, -7486744, 7883202345]$ |
\(y^2+xy+y=x^3-x^2-7486744x+7883202345\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 56.24.0-8.k.1.3, 136.24.0.?, $\ldots$ |
$[(-2236841/90, 72743136247/90)]$ |
| 28322.bb2 |
28322t2 |
28322.bb |
28322t |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 7^{10} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$952$ |
$48$ |
$0$ |
$22.14994349$ |
$1$ |
|
$2$ |
$442368$ |
$2.322117$ |
$6403769793/2775556$ |
$1.13395$ |
$4.99980$ |
$[1, -1, 1, -547854, 78338873]$ |
\(y^2+xy+y=x^3-x^2-547854x+78338873\) |
2.6.0.a.1, 8.12.0.a.1, 28.12.0-2.a.1.1, 56.24.0-8.a.1.3, 68.12.0.b.1, $\ldots$ |
$[(4940289373/2047, 275546624194463/2047)]$ |
| 28322.bb3 |
28322t1 |
28322.bb |
28322t |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 7^{8} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$952$ |
$48$ |
$0$ |
$11.07497174$ |
$1$ |
|
$1$ |
$221184$ |
$1.975544$ |
$721734273/13328$ |
$0.89265$ |
$4.78685$ |
$[1, -1, 1, -264634, -51489175]$ |
\(y^2+xy+y=x^3-x^2-264634x-51489175\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.2, 34.6.0.a.1, $\ldots$ |
$[(603275/23, 401852033/23)]$ |
| 28322.bb4 |
28322t3 |
28322.bb |
28322t |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 7^{14} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$952$ |
$48$ |
$0$ |
$44.29988699$ |
$1$ |
|
$0$ |
$884736$ |
$2.668690$ |
$250404380127/196003234$ |
$0.98833$ |
$5.35743$ |
$[1, -1, 1, 1859516, 579071833]$ |
\(y^2+xy+y=x^3-x^2+1859516x+579071833\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 28.12.0-4.c.1.1, 56.24.0-8.p.1.5, $\ldots$ |
$[(6434192104671696371/95091338, 40589713659645814730372518785/95091338)]$ |
| 28322.bc1 |
28322w1 |
28322.bc |
28322w |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{4} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$0.807480117$ |
$1$ |
|
$2$ |
$96768$ |
$1.236994$ |
$654699641761/112$ |
$0.96142$ |
$4.34569$ |
$[1, 0, 0, -58605, 5455841]$ |
\(y^2+xy=x^3-58605x+5455841\) |
28.2.0.a.1 |
$[(130, 131)]$ |
| 28322.bd1 |
28322bg1 |
28322.bd |
28322bg |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 7^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$58752$ |
$1.283581$ |
$206839/4$ |
$0.99742$ |
$3.97440$ |
$[1, 0, 0, -16479, 799133]$ |
\(y^2+xy=x^3-16479x+799133\) |
28.2.0.a.1 |
$[ ]$ |
| 28322.be1 |
28322u1 |
28322.be |
28322u |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 17^{2} \) |
\( 2^{2} \cdot 7^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$28$ |
$2$ |
$0$ |
$3.127138443$ |
$1$ |
|
$0$ |
$24192$ |
$0.839929$ |
$206839/4$ |
$0.99742$ |
$3.45507$ |
$[1, 0, 0, -2794, -56120]$ |
\(y^2+xy=x^3-2794x-56120\) |
28.2.0.a.1 |
$[(-684/5, 2396/5)]$ |