Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
283140.a1 283140.a \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2588223, -1056501578]$ \(y^2=x^3-2588223x-1056501578\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
283140.a2 283140.a \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1041348, 396632797]$ \(y^2=x^3-1041348x+396632797\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 858.6.0.?, 8580.12.0.? $[ ]$
283140.b1 283140.b \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 211992, -7040420332]$ \(y^2=x^3+211992x-7040420332\) 390.2.0.? $[ ]$
283140.c1 283140.c \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.722998849$ $[0, 0, 0, -32767383, 47371615918]$ \(y^2=x^3-32767383x+47371615918\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.c.1, 220.12.0.? $[(-1617, 310046)]$
283140.c2 283140.c \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.361499424$ $[0, 0, 0, 5904492, 5087787793]$ \(y^2=x^3+5904492x+5087787793\) 2.3.0.a.1, 20.6.0.e.1, 22.6.0.a.1, 220.12.0.? $[(8756, 853281)]$
283140.d1 283140.d \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 115467, -80794087]$ \(y^2=x^3+115467x-80794087\) 30.2.0.a.1 $[ ]$
283140.e1 283140.e \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 3267, 62073]$ \(y^2=x^3+3267x+62073\) 30.2.0.a.1 $[ ]$
283140.f1 283140.f \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.226252134$ $[0, 0, 0, -18183, -389378]$ \(y^2=x^3-18183x-389378\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.c.1, 220.12.0.? $[(-61, 702), (1694, 69498)]$
283140.f2 283140.f \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.226252134$ $[0, 0, 0, 4092, -46343]$ \(y^2=x^3+4092x-46343\) 2.3.0.a.1, 20.6.0.e.1, 22.6.0.a.1, 220.12.0.? $[(66, 715), (14, 117)]$
283140.g1 283140.g \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.641288267$ $[0, 0, 0, -7128, -450252]$ \(y^2=x^3-7128x-450252\) 6.2.0.a.1 $[(141, 1161)]$
283140.h1 283140.h \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -165528, 27168372]$ \(y^2=x^3-165528x+27168372\) 1430.2.0.? $[ ]$
283140.i1 283140.i \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.739334868$ $[0, 0, 0, -22143, 1173942]$ \(y^2=x^3-22143x+1173942\) 2.3.0.a.1, 12.6.0.c.1, 52.6.0.e.1, 156.12.0.? $[(1489/2, 53375/2)]$
283140.i2 283140.i \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.869667434$ $[0, 0, 0, 1452, 83853]$ \(y^2=x^3+1452x+83853\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.e.1, 156.12.0.? $[(-21, 210)]$
283140.j1 283140.j \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $1.216253362$ $[0, 0, 0, -862488, 599285412]$ \(y^2=x^3-862488x+599285412\) 6.2.0.a.1 $[(1936, 78650), (636, 17550)]$
283140.k1 283140.k \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 52272, -28605852]$ \(y^2=x^3+52272x-28605852\) 390.2.0.? $[ ]$
283140.l1 283140.l \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $12.84526797$ $[0, 0, 0, -2200143, 518262118]$ \(y^2=x^3-2200143x+518262118\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.c.1, 220.12.0.? $[(1033481/14, 1010146131/14)]$
283140.l2 283140.l \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.422633986$ $[0, 0, 0, 495132, 61682533]$ \(y^2=x^3+495132x+61682533\) 2.3.0.a.1, 20.6.0.e.1, 22.6.0.a.1, 220.12.0.? $[(5171, 375354)]$
283140.m1 283140.m \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.395703612$ $[0, 0, 0, 395307, -82619163]$ \(y^2=x^3+395307x-82619163\) 30.2.0.a.1 $[(3804, 237627)]$
283140.n1 283140.n \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.235308863$ $[0, 0, 0, -3245583, -1810987882]$ \(y^2=x^3-3245583x-1810987882\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.c.1, 132.12.0.? $[(-781, 15730)]$
283140.n2 283140.n \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.470617726$ $[0, 0, 0, 429792, -169565407]$ \(y^2=x^3+429792x-169565407\) 2.3.0.a.1, 12.6.0.b.1, 22.6.0.a.1, 132.12.0.? $[(562, 15795)]$
283140.o1 283140.o \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.309899909$ $[0, 0, 0, -114708, 14911193]$ \(y^2=x^3-114708x+14911193\) 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 88.12.0.?, $\ldots$ $[(214, 405)]$
283140.o2 283140.o \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.619799818$ $[0, 0, 0, -65703, 27740702]$ \(y^2=x^3-65703x+27740702\) 2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 88.12.0.?, 520.24.0.?, $\ldots$ $[(-149, 5850)]$
283140.p1 283140.p \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.576273952$ $[0, 0, 0, 13971507, 107536929797]$ \(y^2=x^3+13971507x+107536929797\) 30.2.0.a.1 $[(1772, 371293)]$
283140.q1 283140.q \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3964853343, -63051620786858]$ \(y^2=x^3-3964853343x-63051620786858\) 2.3.0.a.1, 20.6.0.e.1, 44.6.0.c.1, 220.12.0.? $[ ]$
283140.q2 283140.q \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 714443532, -6771845552483]$ \(y^2=x^3+714443532x-6771845552483\) 2.3.0.a.1, 20.6.0.e.1, 22.6.0.a.1, 220.12.0.? $[ ]$
283140.r1 283140.r \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $14.97397504$ $[0, 0, 0, -313174983, 1406203600318]$ \(y^2=x^3-313174983x+1406203600318\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 1716.6.0.?, 8580.12.0.? $[(-19828754/75, 662542020206/75)]$
283140.r2 283140.r \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $29.94795009$ $[0, 0, 0, -126003108, -527918252807]$ \(y^2=x^3-126003108x-527918252807\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 858.6.0.?, 8580.12.0.? $[(-9628616908511/41700, 262053984153950513/41700)]$
283140.s1 283140.s \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.813949934$ $[0, 0, 0, -484968, 211187108]$ \(y^2=x^3-484968x+211187108\) 1430.2.0.? $[(-44, 15246)]$
283140.t1 283140.t \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -65703, -5246802]$ \(y^2=x^3-65703x-5246802\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
283140.t2 283140.t \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -20328, 1042173]$ \(y^2=x^3-20328x+1042173\) 2.3.0.a.1, 12.6.0.b.1, 572.6.0.?, 858.6.0.?, 1716.12.0.? $[ ]$
283140.u1 283140.u \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.604381875$ $[0, 0, 0, 23793, 1634006]$ \(y^2=x^3+23793x+1634006\) 20.2.0.a.1 $[(47, 1690)]$
283140.v1 283140.v \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.346974477$ $[0, 0, 0, -2937, 564509]$ \(y^2=x^3-2937x+564509\) 30.2.0.a.1 $[(388, 7605)]$
283140.w1 283140.w \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.155146827$ $[0, 0, 0, -106887, 12337886]$ \(y^2=x^3-106887x+12337886\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 1716.6.0.?, 8580.12.0.? $[(55, 2574)]$
283140.w2 283140.w \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.577573413$ $[0, 0, 0, -104412, 12985841]$ \(y^2=x^3-104412x+12985841\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 858.6.0.?, 8580.12.0.? $[(190, 81)]$
283140.x1 283140.x \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.755258278$ $[0, 0, 0, 4488, -200684]$ \(y^2=x^3+4488x-200684\) 6.2.0.a.1 $[(125, 1521)]$
283140.y1 283140.y \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.349590540$ $[0, 0, 0, -1939872, 1041049636]$ \(y^2=x^3-1939872x+1041049636\) 3.4.0.a.1, 33.8.0-3.a.1.1, 390.8.0.?, 1430.2.0.?, 4290.16.0.? $[(572, 10890)]$
283140.y2 283140.y \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.048771620$ $[0, 0, 0, 2590368, 4825838644]$ \(y^2=x^3+2590368x+4825838644\) 3.4.0.a.1, 33.8.0-3.a.1.2, 390.8.0.?, 1430.2.0.?, 4290.16.0.? $[(13013, 1497375)]$
283140.z1 283140.z \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.308240420$ $[0, 0, 0, -9372, -99011]$ \(y^2=x^3-9372x-99011\) 3.4.0.a.1, 26.2.0.a.1, 33.8.0-3.a.1.2, 78.8.0.?, 858.16.0.? $[(-57, 500)]$
283140.z2 283140.z \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.769413473$ $[0, 0, 0, -5412, 153241]$ \(y^2=x^3-5412x+153241\) 3.4.0.a.1, 26.2.0.a.1, 33.8.0-3.a.1.1, 78.8.0.?, 858.16.0.? $[(42, 5)]$
283140.ba1 283140.ba \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.148399673$ $[0, 0, 0, 123783, 31421401]$ \(y^2=x^3+123783x+31421401\) 30.2.0.a.1 $[(4367, 289575), (77, 6435)]$
283140.bb1 283140.bb \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -306372, 65270909]$ \(y^2=x^3-306372x+65270909\) 2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.12.0.e.1, 260.24.0.?, $\ldots$ $[ ]$
283140.bb2 283140.bb \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -300927, 67702646]$ \(y^2=x^3-300927x+67702646\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 264.12.0.?, 520.24.0.?, $\ldots$ $[ ]$
283140.bc1 283140.bc \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1452, 18029]$ \(y^2=x^3-1452x+18029\) 26.2.0.a.1 $[ ]$
283140.bd1 283140.bd \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.293192510$ $[0, 0, 0, 363, -2299]$ \(y^2=x^3+363x-2299\) 30.2.0.a.1 $[(55, 429)]$
283140.be1 283140.be \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.327381078$ $[0, 0, 0, -792, 16676]$ \(y^2=x^3-792x+16676\) 6.2.0.a.1 $[(-28, 130), (-8, 150)]$
283140.bf1 283140.bf \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -5119752, -5723696396]$ \(y^2=x^3-5119752x-5723696396\) 3.8.0-3.a.1.1, 6.48.0-6.c.1.1 $[ ]$
283140.bf2 283140.bf \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[0, 0, 0, 39050088, 58402077316]$ \(y^2=x^3+39050088x+58402077316\) 3.8.0-3.a.1.2, 6.16.0-6.b.1.2, 18.48.0-18.c.1.2 $[ ]$
283140.bg1 283140.bg \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.700029328$ $[0, 0, 0, -67287, 6709934]$ \(y^2=x^3-67287x+6709934\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 1716.6.0.?, 8580.12.0.? $[(163, 270), (143, 110)]$
283140.bg2 283140.bg \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.700029328$ $[0, 0, 0, -5412, 39809]$ \(y^2=x^3-5412x+39809\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 858.6.0.?, 8580.12.0.? $[(-2, 225), (-52, 425)]$
283140.bh1 283140.bh \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -199287, -31696434]$ \(y^2=x^3-199287x-31696434\) 2.3.0.a.1, 12.6.0.c.1, 52.6.0.e.1, 156.12.0.? $[ ]$
Next   displayed columns for results