Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
281775.a1 |
281775a1 |
281775.a |
281775a |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{9} \cdot 13^{3} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$15.86004712$ |
$1$ |
|
$0$ |
$60632064$ |
$3.204369$ |
$-57834888040448/823875$ |
$0.95134$ |
$5.32671$ |
$[0, -1, 1, -98956008, -378860127832]$ |
\(y^2+y=x^3-x^2-98956008x-378860127832\) |
6630.2.0.? |
$[(420761434/145, 7249907784652/145)]$ |
281775.b1 |
281775b1 |
281775.b |
281775b |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{9} \cdot 13^{3} \cdot 17^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$5.225643864$ |
$1$ |
|
$6$ |
$8709120$ |
$2.279858$ |
$122023936/112047$ |
$0.81134$ |
$3.99271$ |
$[0, -1, 1, 373292, -67365432]$ |
\(y^2+y=x^3-x^2+373292x-67365432\) |
6630.2.0.? |
$[(567, 18062), (2697/4, 36093/4)]$ |
281775.c1 |
281775c1 |
281775.c |
281775c |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{11} \cdot 5^{2} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$7.863356757$ |
$1$ |
|
$2$ |
$10340352$ |
$2.278625$ |
$-10372034560/29937843$ |
$0.91644$ |
$4.04313$ |
$[0, -1, 1, -253838, 120536588]$ |
\(y^2+y=x^3-x^2-253838x+120536588\) |
6.2.0.a.1 |
$[(9126, 870499)]$ |
281775.d1 |
281775d1 |
281775.d |
281775d |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{16} \cdot 5^{7} \cdot 13^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$86482944$ |
$3.495754$ |
$1186118904991744/36374479245$ |
$0.95769$ |
$5.34166$ |
$[0, -1, 1, -105342908, 405014426468]$ |
\(y^2+y=x^3-x^2-105342908x+405014426468\) |
10.2.0.a.1 |
$[ ]$ |
281775.e1 |
281775e1 |
281775.e |
281775e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{7} \cdot 13^{3} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10418688$ |
$2.413895$ |
$-762549907456/24024195$ |
$0.97132$ |
$4.30867$ |
$[0, -1, 1, -1375158, 637823468]$ |
\(y^2+y=x^3-x^2-1375158x+637823468\) |
390.2.0.? |
$[ ]$ |
281775.f1 |
281775f1 |
281775.f |
281775f |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{7} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1377792$ |
$1.340740$ |
$-4096/195$ |
$0.83662$ |
$3.13938$ |
$[0, 1, 1, -2408, -415906]$ |
\(y^2+y=x^3+x^2-2408x-415906\) |
390.2.0.? |
$[ ]$ |
281775.g1 |
281775g1 |
281775.g |
281775g |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{16} \cdot 5^{7} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.203768966$ |
$1$ |
|
$28$ |
$5087232$ |
$2.079147$ |
$1186118904991744/36374479245$ |
$0.95769$ |
$3.98702$ |
$[0, 1, 1, -364508, 82308644]$ |
\(y^2+y=x^3+x^2-364508x+82308644\) |
10.2.0.a.1 |
$[(-2, 9112), (727, 14215)]$ |
281775.h1 |
281775h1 |
281775.h |
281775h |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{13} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$2.813480186$ |
$1$ |
|
$2$ |
$8870400$ |
$2.346176$ |
$-32278933504/27421875$ |
$0.96372$ |
$4.12444$ |
$[0, 1, 1, -479258, -200779606]$ |
\(y^2+y=x^3+x^2-479258x-200779606\) |
390.2.0.? |
$[(948, 14062)]$ |
281775.i1 |
281775i1 |
281775.i |
281775i |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{11} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.193413856$ |
$1$ |
|
$8$ |
$608256$ |
$0.862019$ |
$-10372034560/29937843$ |
$0.91644$ |
$2.68848$ |
$[0, 1, 1, -878, 24224]$ |
\(y^2+y=x^3+x^2-878x+24224\) |
6.2.0.a.1 |
$[(-8, 175)]$ |
281775.j1 |
281775j1 |
281775.j |
281775j |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{9} \cdot 13^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3566592$ |
$1.787764$ |
$-57834888040448/823875$ |
$0.95134$ |
$3.97207$ |
$[0, 1, 1, -342408, -77234656]$ |
\(y^2+y=x^3+x^2-342408x-77234656\) |
6630.2.0.? |
$[ ]$ |
281775.k1 |
281775k4 |
281775.k |
281775k |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$3.055440723$ |
$1$ |
|
$4$ |
$2621440$ |
$1.902960$ |
$37159393753/1053$ |
$1.11616$ |
$4.06367$ |
$[1, 1, 1, -502288, -137223844]$ |
\(y^2+xy+y=x^3+x^2-502288x-137223844\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 52.12.0.g.1, $\ldots$ |
$[(-409, 258)]$ |
281775.k2 |
281775k3 |
281775.k |
281775k |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3 \cdot 5^{6} \cdot 13^{4} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$3.055440723$ |
$1$ |
|
$4$ |
$2621440$ |
$1.902960$ |
$822656953/85683$ |
$0.96086$ |
$3.76002$ |
$[1, 1, 1, -141038, 18402656]$ |
\(y^2+xy+y=x^3+x^2-141038x+18402656\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 104.12.0.?, 312.24.0.?, $\ldots$ |
$[(341, 3008)]$ |
281775.k3 |
281775k2 |
281775.k |
281775k |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{6} \cdot 13^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$13260$ |
$48$ |
$0$ |
$1.527720361$ |
$1$ |
|
$12$ |
$1310720$ |
$1.556385$ |
$10218313/1521$ |
$0.91403$ |
$3.41032$ |
$[1, 1, 1, -32663, -1971844]$ |
\(y^2+xy+y=x^3+x^2-32663x-1971844\) |
2.6.0.a.1, 12.12.0.a.1, 52.12.0.b.1, 156.24.0.?, 340.12.0.?, $\ldots$ |
$[(-84, 475)]$ |
281775.k4 |
281775k1 |
281775.k |
281775k |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{6} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$3.055440723$ |
$1$ |
|
$5$ |
$655360$ |
$1.209812$ |
$12167/39$ |
$0.85844$ |
$2.99430$ |
$[1, 1, 1, 3462, -165594]$ |
\(y^2+xy+y=x^3+x^2+3462x-165594\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(60, 482)]$ |
281775.l1 |
281775l1 |
281775.l |
281775l |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{4} \cdot 5^{3} \cdot 13^{3} \cdot 17^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$0.287316036$ |
$1$ |
|
$16$ |
$435456$ |
$1.033672$ |
$1982251/177957$ |
$0.94380$ |
$2.84478$ |
$[1, 1, 1, 572, 65606]$ |
\(y^2+xy+y=x^3+x^2+572x+65606\) |
260.2.0.? |
$[(290, 4827), (-16, 237)]$ |
281775.m1 |
281775m1 |
281775.m |
281775m |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{3} \cdot 13^{3} \cdot 17^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$0.986070230$ |
$1$ |
|
$12$ |
$9870336$ |
$2.586502$ |
$-15101696859749/14414517$ |
$0.98756$ |
$4.60930$ |
$[1, 1, 1, -4919653, 4201417556]$ |
\(y^2+xy+y=x^3+x^2-4919653x+4201417556\) |
260.2.0.? |
$[(1276, 1240), (1250, 2007)]$ |
281775.n1 |
281775n1 |
281775.n |
281775n |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{6} \cdot 5^{4} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$633600$ |
$1.396149$ |
$304175/9477$ |
$0.95479$ |
$3.18990$ |
$[1, 1, 1, 3462, 571356]$ |
\(y^2+xy+y=x^3+x^2+3462x+571356\) |
52.2.0.a.1 |
$[ ]$ |
281775.o1 |
281775o2 |
281775.o |
281775o |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{12} \cdot 5^{6} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13271040$ |
$2.698071$ |
$3885442650361/1996623837$ |
$0.95822$ |
$4.43420$ |
$[1, 1, 1, -2366338, -469935094]$ |
\(y^2+xy+y=x^3+x^2-2366338x-469935094\) |
2.3.0.a.1, 26.6.0.b.1, 68.6.0.c.1, 884.12.0.? |
$[ ]$ |
281775.o2 |
281775o1 |
281775.o |
281775o |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{6} \cdot 5^{6} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6635520$ |
$2.351498$ |
$2000852317801/2094417$ |
$0.91984$ |
$4.38131$ |
$[1, 1, 1, -1896713, -1005307594]$ |
\(y^2+xy+y=x^3+x^2-1896713x-1005307594\) |
2.3.0.a.1, 34.6.0.a.1, 52.6.0.c.1, 884.12.0.? |
$[ ]$ |
281775.p1 |
281775p3 |
281775.p |
281775p |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{3} \cdot 5^{10} \cdot 13^{12} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$132.1025584$ |
$1$ |
|
$0$ |
$1656225792$ |
$5.132912$ |
$1968666709544018637994033129/113621848881699526875$ |
$1.02739$ |
$7.13236$ |
$[1, 1, 1, -188648785313, 31535984488139156]$ |
\(y^2+xy+y=x^3+x^2-188648785313x+31535984488139156\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 104.12.0.?, 312.24.0.?, $\ldots$ |
$[(120324768506501954745408825490536418752262217089359720308579/667492655894644409082721355, 4987055925410715107246466849283560868081623429263469816866647923945081994575863662362023/667492655894644409082721355)]$ |
281775.p2 |
281775p4 |
281775.p |
281775p |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{12} \cdot 5^{10} \cdot 13^{3} \cdot 17^{14} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$132.1025584$ |
$1$ |
|
$0$ |
$1656225792$ |
$5.132912$ |
$70141892778055497175333129/5090453819946781723125$ |
$1.02034$ |
$6.86664$ |
$[1, 1, 1, -62075816563, -5567198688735844]$ |
\(y^2+xy+y=x^3+x^2-62075816563x-5567198688735844\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 52.12.0.g.1, $\ldots$ |
$[(-48514158814986351623051770193593720961816833635702442153699/638492237419738261719348385, 3036907695147213202257933209010207417765269125264759710558852964839240837431797923712419/638492237419738261719348385)]$ |
281775.p3 |
281775p2 |
281775.p |
281775p |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{6} \cdot 5^{14} \cdot 13^{6} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$13260$ |
$48$ |
$0$ |
$66.05127923$ |
$1$ |
|
$2$ |
$828112896$ |
$4.786339$ |
$568832774079017834683129/114800389711906640625$ |
$1.00981$ |
$6.48296$ |
$[1, 1, 1, -12471675938, 432620536420406]$ |
\(y^2+xy+y=x^3+x^2-12471675938x+432620536420406\) |
2.6.0.a.1, 12.12.0.a.1, 52.12.0.b.1, 156.24.0.?, 340.12.0.?, $\ldots$ |
$[(339644557624766010479358163194/6240697506005, 4377389894960953645343270780162658235013356262/6240697506005)]$ |
281775.p4 |
281775p1 |
281775.p |
281775p |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{22} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$132.1025584$ |
$1$ |
|
$1$ |
$414056448$ |
$4.439766$ |
$1292603583867446566871/2615843353271484375$ |
$1.00195$ |
$6.07082$ |
$[1, 1, 1, 1639652187, 40382059857906]$ |
\(y^2+xy+y=x^3+x^2+1639652187x+40382059857906\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(26474609670394382507124221225420491397843943180066245145546/640008953606672421895625095, 5340833035188891247834144220298203503726598455809628195626683885432168916850755211056471/640008953606672421895625095)]$ |
281775.q1 |
281775q1 |
281775.q |
281775q |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$6.046792440$ |
$1$ |
|
$2$ |
$3444480$ |
$2.076630$ |
$-417267265/19773$ |
$0.90540$ |
$3.96870$ |
$[1, 0, 0, -328888, -75538483]$ |
\(y^2+xy=x^3-328888x-75538483\) |
52.2.0.a.1 |
$[(5927, 451124)]$ |
281775.r1 |
281775r1 |
281775.r |
281775r |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{3} \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$0.270176063$ |
$1$ |
|
$16$ |
$580608$ |
$1.169895$ |
$-15101696859749/14414517$ |
$0.98756$ |
$3.25465$ |
$[1, 0, 0, -17023, 854162]$ |
\(y^2+xy=x^3-17023x+854162\) |
260.2.0.? |
$[(62, 164), (-133, 944)]$ |
281775.s1 |
281775s1 |
281775.s |
281775s |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{4} \cdot 5^{3} \cdot 13^{3} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7402752$ |
$2.450279$ |
$1982251/177957$ |
$0.94380$ |
$4.19942$ |
$[1, 0, 0, 165302, 321166037]$ |
\(y^2+xy=x^3+165302x+321166037\) |
260.2.0.? |
$[ ]$ |
281775.t1 |
281775t1 |
281775.t |
281775t |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{3} \cdot 13 \cdot 17^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$7.848810851$ |
$1$ |
|
$6$ |
$3960320$ |
$2.060890$ |
$32768/28431$ |
$1.15389$ |
$3.82796$ |
$[0, -1, 1, 16377, 31218248]$ |
\(y^2+y=x^3-x^2+16377x+31218248\) |
6630.2.0.? |
$[(482, 12282), (92, 5787)]$ |
281775.u1 |
281775u1 |
281775.u |
281775u |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{9} \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$2.631905105$ |
$1$ |
|
$2$ |
$1164800$ |
$1.449003$ |
$32768/28431$ |
$1.15389$ |
$3.24283$ |
$[0, -1, 1, 1417, 793943]$ |
\(y^2+y=x^3-x^2+1417x+793943\) |
6630.2.0.? |
$[(-83, 312)]$ |
281775.v1 |
281775v1 |
281775.v |
281775v |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 13^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$14.61167988$ |
$1$ |
|
$0$ |
$2511648$ |
$2.072712$ |
$-47349760/4563$ |
$0.87429$ |
$3.93487$ |
$[0, -1, 1, -278403, -60974197]$ |
\(y^2+y=x^3-x^2-278403x-60974197\) |
6.2.0.a.1 |
$[(6160247/77, 12670646463/77)]$ |
281775.w1 |
281775w1 |
281775.w |
281775w |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{3} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$413440$ |
$1.170031$ |
$-32768/3159$ |
$1.04783$ |
$2.97607$ |
$[0, -1, 1, -963, 149303]$ |
\(y^2+y=x^3-x^2-963x+149303\) |
390.2.0.? |
$[ ]$ |
281775.x1 |
281775x1 |
281775.x |
281775x |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{8} \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$738720$ |
$1.460827$ |
$-47349760/4563$ |
$0.87429$ |
$3.34974$ |
$[0, -1, 1, -24083, -1545682]$ |
\(y^2+y=x^3-x^2-24083x-1545682\) |
6.2.0.a.1 |
$[ ]$ |
281775.y1 |
281775y1 |
281775.y |
281775y |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{7} \cdot 13 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$4.013389479$ |
$1$ |
|
$2$ |
$1161216$ |
$1.619884$ |
$-16777216/3315$ |
$0.84101$ |
$3.47324$ |
$[0, -1, 1, -38533, -3359157]$ |
\(y^2+y=x^3-x^2-38533x-3359157\) |
6630.2.0.? |
$[(297, 3362)]$ |
281775.z1 |
281775z1 |
281775.z |
281775z |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{11} \cdot 13^{3} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12441600$ |
$2.923580$ |
$-30558612127744/28361896875$ |
$0.94057$ |
$4.67481$ |
$[0, -1, 1, -4705883, 6341903168]$ |
\(y^2+y=x^3-x^2-4705883x+6341903168\) |
6630.2.0.? |
$[ ]$ |
281775.ba1 |
281775ba2 |
281775.ba |
281775ba |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{9} \cdot 13^{6} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38071296$ |
$3.280659$ |
$30326094659584/5430160125$ |
$0.96036$ |
$5.04949$ |
$[0, -1, 1, -31033783, -55287614157]$ |
\(y^2+y=x^3-x^2-31033783x-55287614157\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 10.2.0.a.1, 15.8.0-3.a.1.1, 30.16.0-30.a.1.2 |
$[ ]$ |
281775.ba2 |
281775ba1 |
281775.ba |
281775ba |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{6} \cdot 5^{7} \cdot 13^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12690432$ |
$2.731354$ |
$721403674624/616005$ |
$0.92350$ |
$4.75157$ |
$[0, -1, 1, -8925283, 10258561218]$ |
\(y^2+y=x^3-x^2-8925283x+10258561218\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 10.2.0.a.1, 15.8.0-3.a.1.2, 30.16.0-30.a.1.3 |
$[ ]$ |
281775.bb1 |
281775bb2 |
281775.bb |
281775bb |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{9} \cdot 13^{6} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$3.181396237$ |
$1$ |
|
$6$ |
$2239488$ |
$1.864052$ |
$30326094659584/5430160125$ |
$0.96036$ |
$3.69484$ |
$[0, 1, 1, -107383, -11291231]$ |
\(y^2+y=x^3+x^2-107383x-11291231\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ |
$[(1913, 82387), (-157, 1312)]$ |
281775.bb2 |
281775bb1 |
281775.bb |
281775bb |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{6} \cdot 5^{7} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$510$ |
$16$ |
$0$ |
$0.353488470$ |
$1$ |
|
$16$ |
$746496$ |
$1.314747$ |
$721403674624/616005$ |
$0.92350$ |
$3.39692$ |
$[0, 1, 1, -30883, 2077144]$ |
\(y^2+y=x^3+x^2-30883x+2077144\) |
3.4.0.a.1, 10.2.0.a.1, 30.8.0.a.1, 102.8.0.?, 255.8.0.?, $\ldots$ |
$[(128, 487), (98, 37)]$ |
281775.bc1 |
281775bc1 |
281775.bc |
281775bc |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{8} \cdot 13^{2} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12558240$ |
$2.877434$ |
$-47349760/4563$ |
$0.87429$ |
$4.70439$ |
$[0, 1, 1, -6960083, -7635694756]$ |
\(y^2+y=x^3+x^2-6960083x-7635694756\) |
6.2.0.a.1 |
$[ ]$ |
281775.bd1 |
281775bd1 |
281775.bd |
281775bd |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{5} \cdot 5^{9} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2067200$ |
$1.974751$ |
$-32768/3159$ |
$1.04783$ |
$3.74559$ |
$[0, 1, 1, -24083, 18614744]$ |
\(y^2+y=x^3+x^2-24083x+18614744\) |
390.2.0.? |
$[ ]$ |
281775.be1 |
281775be1 |
281775.be |
281775be |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$2.979064689$ |
$1$ |
|
$2$ |
$147744$ |
$0.656107$ |
$-47349760/4563$ |
$0.87429$ |
$2.58022$ |
$[0, 1, 1, -963, -12751]$ |
\(y^2+y=x^3+x^2-963x-12751\) |
6.2.0.a.1 |
$[(129, 1423)]$ |
281775.bf1 |
281775bf1 |
281775.bf |
281775bf |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{9} \cdot 13 \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19801600$ |
$2.865612$ |
$32768/28431$ |
$1.15389$ |
$4.59748$ |
$[0, 1, 1, 409417, 3903099869]$ |
\(y^2+y=x^3+x^2+409417x+3903099869\) |
6630.2.0.? |
$[ ]$ |
281775.bg1 |
281775bg1 |
281775.bg |
281775bg |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{3} \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$0.399411118$ |
$1$ |
|
$4$ |
$232960$ |
$0.644284$ |
$32768/28431$ |
$1.15389$ |
$2.47331$ |
$[0, 1, 1, 57, 6374]$ |
\(y^2+y=x^3+x^2+57x+6374\) |
6630.2.0.? |
$[(-6, 76)]$ |
281775.bh1 |
281775bh1 |
281775.bh |
281775bh |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{16} \cdot 5^{13} \cdot 13 \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$78.25309166$ |
$1$ |
|
$0$ |
$467195904$ |
$4.468391$ |
$-10730378053390609/43719326015625$ |
$1.00733$ |
$6.13483$ |
$[1, 1, 0, -1451220875, -60338385759750]$ |
\(y^2+xy=x^3+x^2-1451220875x-60338385759750\) |
260.2.0.? |
$[(664027958081393262329868906763015826/2055428575878395, 519936671404193164015972495981895798852011293460369666/2055428575878395)]$ |
281775.bi1 |
281775bi1 |
281775.bi |
281775bi |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{2} \cdot 5^{9} \cdot 13 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$1.016721644$ |
$1$ |
|
$4$ |
$4230144$ |
$2.195087$ |
$-24529249/14625$ |
$0.79164$ |
$3.98808$ |
$[1, 1, 0, -289150, 85152625]$ |
\(y^2+xy=x^3+x^2-289150x+85152625\) |
260.2.0.? |
$[(120, 7165)]$ |
281775.bj1 |
281775bj4 |
281775.bj |
281775bj |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3 \cdot 5^{7} \cdot 13 \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$15.79880291$ |
$1$ |
|
$0$ |
$12386304$ |
$2.626282$ |
$126574061279329/16286595$ |
$0.90554$ |
$4.71180$ |
$[1, 1, 0, -7557500, -7999044375]$ |
\(y^2+xy=x^3+x^2-7557500x-7999044375\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 312.12.0.?, 408.12.0.?, $\ldots$ |
$[(-31822481/142, 302273709/142)]$ |
281775.bj2 |
281775bj2 |
281775.bj |
281775bj |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{2} \cdot 5^{8} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$13260$ |
$48$ |
$0$ |
$7.899401459$ |
$1$ |
|
$2$ |
$6193152$ |
$2.279709$ |
$39616946929/10989225$ |
$0.84706$ |
$4.06877$ |
$[1, 1, 0, -513125, -102300000]$ |
\(y^2+xy=x^3+x^2-513125x-102300000\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 156.12.0.?, 204.12.0.?, 780.24.0.?, $\ldots$ |
$[(-1841/2, 50263/2)]$ |
281775.bj3 |
281775bj1 |
281775.bj |
281775bj |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( 3^{4} \cdot 5^{7} \cdot 13 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$3.949700729$ |
$1$ |
|
$3$ |
$3096576$ |
$1.933134$ |
$1948441249/89505$ |
$0.80465$ |
$3.82873$ |
$[1, 1, 0, -188000, 30025875]$ |
\(y^2+xy=x^3+x^2-188000x+30025875\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 312.12.0.?, 408.12.0.?, $\ldots$ |
$[(190, 1005)]$ |
281775.bj4 |
281775bj3 |
281775.bj |
281775bj |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 5^{10} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$26520$ |
$48$ |
$0$ |
$15.79880291$ |
$1$ |
|
$0$ |
$12386304$ |
$2.626282$ |
$688699320191/910381875$ |
$0.88763$ |
$4.31626$ |
$[1, 1, 0, 1329250, -667909125]$ |
\(y^2+xy=x^3+x^2+1329250x-667909125\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 102.6.0.?, 204.12.0.?, $\ldots$ |
$[(4126399/62, 10523548633/62)]$ |
281775.bk1 |
281775bk1 |
281775.bk |
281775bk |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 5^{9} \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$7.145284493$ |
$1$ |
|
$6$ |
$2903040$ |
$1.974615$ |
$-15101696859749/14414517$ |
$0.98756$ |
$4.02418$ |
$[1, 1, 0, -425575, 106770250]$ |
\(y^2+xy=x^3+x^2-425575x+106770250\) |
260.2.0.? |
$[(10, 10120), (10285/4, 617305/4)]$ |
281775.bl1 |
281775bl1 |
281775.bl |
281775bl |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{4} \cdot 5^{9} \cdot 13^{3} \cdot 17^{10} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$50.15568155$ |
$1$ |
|
$2$ |
$37013760$ |
$3.254997$ |
$1982251/177957$ |
$0.94380$ |
$4.96895$ |
$[1, 1, 0, 4132550, 40145754625]$ |
\(y^2+xy=x^3+x^2+4132550x+40145754625\) |
260.2.0.? |
$[(16, 200521), (2715/2, 1661285/2)]$ |