Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 112 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
277725.a1 277725.a \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -162068158, -1041095638032]$ \(y^2+y=x^3-x^2-162068158x-1041095638032\) 966.2.0.? $[ ]$
277725.b1 277725.b \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -110208, 42635318]$ \(y^2+y=x^3-x^2-110208x+42635318\) 966.2.0.? $[ ]$
277725.c1 277725.c \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $7.232786690$ $[0, -1, 1, -14988, -832612]$ \(y^2+y=x^3-x^2-14988x-832612\) 966.2.0.? $[(146, 264), (6604/3, 528193/3)]$
277725.d1 277725.d \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -585739658, 7631287978718]$ \(y^2+y=x^3-x^2-585739658x+7631287978718\) 70.2.0.a.1 $[ ]$
277725.e1 277725.e \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $4.183799947$ $[0, -1, 1, -21920878, -30629387742]$ \(y^2+y=x^3-x^2-21920878x-30629387742\) 10.2.0.a.1 $[(9877, 846352)]$
277725.f1 277725.f \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1274008, 646303668]$ \(y^2+y=x^3-x^2-1274008x+646303668\) 966.2.0.? $[ ]$
277725.g1 277725.g \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $0.140680763$ $[0, -1, 1, -41438, 2531828]$ \(y^2+y=x^3-x^2-41438x+2531828\) 10.2.0.a.1 $[(-199, 1690), (242, 2572)]$
277725.h1 277725.h \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.191977610$ $[0, -1, 1, -1107258, -626826832]$ \(y^2+y=x^3-x^2-1107258x-626826832\) 70.2.0.a.1 $[(1437, 27337)]$
277725.i1 277725.i \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.808895039$ $[0, -1, 1, 22042, -1007182]$ \(y^2+y=x^3-x^2+22042x-1007182\) 966.2.0.? $[(1573/2, 66121/2)]$
277725.j1 277725.j \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $30.73569948$ $[0, -1, 1, -85734055758, 12667696500377918]$ \(y^2+y=x^3-x^2-85734055758x+12667696500377918\) 966.2.0.? $[(41853533547984733/202658, 8254726801321471328272019/202658)]$
277725.k1 277725.k \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $1.344704603$ $[0, 1, 1, 74942, -3588506]$ \(y^2+y=x^3+x^2+74942x-3588506\) 966.2.0.? $[(107, 2380), (14597, 1763950)]$
277725.l1 277725.l \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $6.906311125$ $[1, 1, 1, 5359817, 1372425806]$ \(y^2+xy+y=x^3+x^2+5359817x+1372425806\) 420.2.0.? $[(8674/5, 7130597/5)]$
277725.m1 277725.m \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -116188513, 449343723656]$ \(y^2+xy+y=x^3+x^2-116188513x+449343723656\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 48.48.1.fo.1, 92.12.0.?, $\ldots$ $[ ]$
277725.m2 277725.m \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 7002362, 31233893906]$ \(y^2+xy+y=x^3+x^2+7002362x+31233893906\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 46.6.0.a.1, 48.48.1.fv.1, $\ldots$ $[ ]$
277725.n1 277725.n \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -19011213, 31804155906]$ \(y^2+xy+y=x^3+x^2-19011213x+31804155906\) 2.3.0.a.1, 20.6.0.b.1, 322.6.0.?, 3220.12.0.? $[ ]$
277725.n2 277725.n \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -10745588, 59642780906]$ \(y^2+xy+y=x^3+x^2-10745588x+59642780906\) 2.3.0.a.1, 20.6.0.a.1, 644.6.0.?, 3220.12.0.? $[ ]$
277725.o1 277725.o \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -2288, -42844]$ \(y^2+xy+y=x^3+x^2-2288x-42844\) 42.2.0.a.1 $[ ]$
277725.p1 277725.p \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $5.187782168$ $[1, 1, 1, -1210363, 509177156]$ \(y^2+xy+y=x^3+x^2-1210363x+509177156\) 42.2.0.a.1 $[(366, 10558)]$
277725.q1 277725.q \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.300107650$ $[1, 1, 1, -219638, -37026844]$ \(y^2+xy+y=x^3+x^2-219638x-37026844\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 48.48.1.fo.1, 92.12.0.?, $\ldots$ $[(-255, 1702)]$
277725.q2 277725.q \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.600215301$ $[1, 1, 1, 13237, -2561344]$ \(y^2+xy+y=x^3+x^2+13237x-2561344\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 46.6.0.a.1, 48.48.1.fv.1, $\ldots$ $[(429, 8857)]$
277725.r1 277725.r \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $7.264638582$ $[1, 1, 1, -1488088, 698030156]$ \(y^2+xy+y=x^3+x^2-1488088x+698030156\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 42.6.0.a.1, 84.12.0.?, $\ldots$ $[(37261/4, 6283497/4)]$
277725.r2 277725.r \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.632319291$ $[1, 1, 1, -99463, 9272156]$ \(y^2+xy+y=x^3+x^2-99463x+9272156\) 2.6.0.a.1, 20.12.0.a.1, 84.12.0.?, 92.12.0.?, 420.24.0.?, $\ldots$ $[(2221, 102573)]$
277725.r3 277725.r \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $7.264638582$ $[1, 1, 1, -33338, -2233594]$ \(y^2+xy+y=x^3+x^2-33338x-2233594\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 92.12.0.?, 168.12.0.?, $\ldots$ $[(-6775/8, 206569/8)]$
277725.r4 277725.r \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.816159645$ $[1, 1, 1, 231162, 58204656]$ \(y^2+xy+y=x^3+x^2+231162x+58204656\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0.h.1, 92.12.0.?, 168.12.0.?, $\ldots$ $[(-171, 3788)]$
277725.s1 277725.s \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $1.322839212$ $[1, 1, 1, 10132, -108394]$ \(y^2+xy+y=x^3+x^2+10132x-108394\) 420.2.0.? $[(320, 5842), (26, 403)]$
277725.t1 277725.t \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $23.96558109$ $[1, 1, 1, -56781813, -164711673594]$ \(y^2+xy+y=x^3+x^2-56781813x-164711673594\) 2.3.0.a.1, 4.12.0-4.c.1.2, 168.24.0.?, 1610.6.0.?, 2760.24.0.?, $\ldots$ $[(-1291019317649/17226, 11224340157145663/17226)]$
277725.t2 277725.t \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.98279054$ $[1, 1, 1, -3551188, -2571189844]$ \(y^2+xy+y=x^3+x^2-3551188x-2571189844\) 2.6.0.a.1, 4.12.0-2.a.1.1, 84.24.0.?, 1380.24.0.?, 3220.24.0.?, $\ldots$ $[(-3709425/58, 560920519/58)]$
277725.t3 277725.t \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $23.96558109$ $[1, 1, 1, -2162563, -4601359594]$ \(y^2+xy+y=x^3+x^2-2162563x-4601359594\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 84.12.0.?, 168.24.0.?, $\ldots$ $[(484615695495/11426, 290061794445082427/11426)]$
277725.t4 277725.t \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/4\Z$ $5.991395273$ $[1, 1, 1, -311063, -5010844]$ \(y^2+xy+y=x^3+x^2-311063x-5010844\) 2.3.0.a.1, 4.12.0-4.c.1.1, 168.24.0.?, 690.6.0.?, 1380.24.0.?, $\ldots$ $[(-1945/2, 46891/2)]$
277725.u1 277725.u \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -6883888, -6952404733]$ \(y^2+xy=x^3-6883888x-6952404733\) 6.2.0.a.1 $[ ]$
277725.v1 277725.v \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -602013, 199344642]$ \(y^2+xy=x^3-602013x+199344642\) 420.2.0.? $[ ]$
277725.w1 277725.w \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -10836836388, 491177662455267]$ \(y^2+xy=x^3-10836836388x+491177662455267\) 6.2.0.a.1 $[ ]$
277725.x1 277725.x \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.446052883$ $[1, 0, 0, -20485513, -40371442108]$ \(y^2+xy=x^3-20485513x-40371442108\) 6.2.0.a.1 $[(44627, 9354449)]$
277725.y1 277725.y \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $7.985504946$ $[1, 0, 0, -1138, -16483]$ \(y^2+xy=x^3-1138x-16483\) 420.2.0.? $[(1957/7, 9136/7)]$
277725.z1 277725.z \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.291983745$ $[1, 0, 0, -15985333, 22890328832]$ \(y^2+xy=x^3-15985333x+22890328832\) 2.3.0.a.1, 20.6.0.b.1, 276.6.0.?, 690.6.0.?, 1380.12.0.? $[(21917, 3182879)]$
277725.z2 277725.z \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.583967491$ $[1, 0, 0, 15767892, 102559170357]$ \(y^2+xy=x^3+15767892x+102559170357\) 2.3.0.a.1, 20.6.0.a.1, 276.6.0.?, 1380.12.0.? $[(-1428, 278439)]$
277725.ba1 277725.ba \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $15.28596716$ $[1, 0, 0, -15281763, 22992235392]$ \(y^2+xy=x^3-15281763x+22992235392\) 2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? $[(102309493/51, 1027309277030/51)]$
277725.ba2 277725.ba \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $7.642983580$ $[1, 0, 0, -14951138, 24034696017]$ \(y^2+xy=x^3-14951138x+24034696017\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[(1413493/3, 1677884573/3)]$
277725.bb1 277725.bb \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $18.52148843$ $[1, 0, 0, -3641576763, 84582625232892]$ \(y^2+xy=x^3-3641576763x+84582625232892\) 6.2.0.a.1 $[(1204617619/162, 15889074044815/162)]$
277725.bc1 277725.bc \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.418318524$ $[1, 0, 0, -9533, -347568]$ \(y^2+xy=x^3-9533x-347568\) 2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? $[(-53, 124)]$
277725.bc2 277725.bc \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.209159262$ $[1, 0, 0, 3692, -1233643]$ \(y^2+xy=x^3+3692x-1233643\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[(113, 737)]$
277725.bd1 277725.bd \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $2.788162485$ $[0, -1, 1, -1533, -25657]$ \(y^2+y=x^3-x^2-1533x-25657\) 70.2.0.a.1 $[(47, 62), (57, 262)]$
277725.be1 277725.be \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 385755617, 6561607023918]$ \(y^2+y=x^3-x^2+385755617x+6561607023918\) 966.2.0.? $[ ]$
277725.bf1 277725.bf \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -42787283, 107756610218]$ \(y^2+y=x^3-x^2-42787283x+107756610218\) 3.4.0.a.1, 15.8.0-3.a.1.2, 42.8.0-3.a.1.2, 70.2.0.a.1, 210.16.0.? $[ ]$
277725.bf2 277725.bf \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 11964217, 358231034843]$ \(y^2+y=x^3-x^2+11964217x+358231034843\) 3.4.0.a.1, 15.8.0-3.a.1.1, 42.8.0-3.a.1.1, 70.2.0.a.1, 210.16.0.? $[ ]$
277725.bg1 277725.bg \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $22.40438057$ $[0, -1, 1, 7462427, -9238341702]$ \(y^2+y=x^3-x^2+7462427x-9238341702\) 70.2.0.a.1 $[(14658329197/2578, 2295161271176467/2578)]$
277725.bh1 277725.bh \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $0.436238371$ $[0, -1, 1, 14107, 754388]$ \(y^2+y=x^3-x^2+14107x+754388\) 70.2.0.a.1 $[(-38, 402), (653/2, 21731/2)]$
277725.bi1 277725.bi \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 88167, 506436068]$ \(y^2+y=x^3-x^2+88167x+506436068\) 966.2.0.? $[ ]$
277725.bj1 277725.bj \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $1.871782833$ $[0, -1, 1, -282133, -178341207]$ \(y^2+y=x^3-x^2-282133x-178341207\) 3.4.0.a.1, 210.8.0.?, 345.8.0.?, 966.8.0.?, 4830.16.0.? $[(5597, 416587)]$
277725.bj2 277725.bj \( 3 \cdot 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $5.615348501$ $[0, -1, 1, 2495117, 4366628418]$ \(y^2+y=x^3-x^2+2495117x+4366628418\) 3.4.0.a.1, 210.8.0.?, 345.8.0.?, 966.8.0.?, 4830.16.0.? $[(268388/7, 146460091/7)]$
Next   displayed columns for results