Learn more

Refine search


Results (1-50 of 94 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
273273.a1 273273.a \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -251190, -79285438]$ \(y^2+y=x^3-x^2-251190x-79285438\) 6.2.0.a.1 $[ ]$
273273.b1 273273.b \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.197570338$ $[0, -1, 1, -814298, 288142532]$ \(y^2+y=x^3-x^2-814298x+288142532\) 6006.2.0.? $[(607, 4140)]$
273273.c1 273273.c \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.500947820$ $[0, 1, 1, -15500, -5258158]$ \(y^2+y=x^3+x^2-15500x-5258158\) 182.2.0.? $[(1759, 73573)]$
273273.d1 273273.d \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -5126, 229688]$ \(y^2+y=x^3+x^2-5126x+229688\) 6.2.0.a.1 $[ ]$
273273.e1 273273.e \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.318327577$ $[1, 1, 1, -147823348, 691701355652]$ \(y^2+xy+y=x^3+x^2-147823348x+691701355652\) 2.3.0.a.1, 546.6.0.?, 572.6.0.?, 924.6.0.?, 12012.12.0.? $[(7090, 6328)]$
273273.e2 273273.e \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.636655154$ $[1, 1, 1, -143584113, 733244162958]$ \(y^2+xy+y=x^3+x^2-143584113x+733244162958\) 2.3.0.a.1, 286.6.0.?, 924.6.0.?, 1092.6.0.?, 12012.12.0.? $[(-2227, 1021881)]$
273273.f1 273273.f \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.035889048$ $[1, 1, 1, -601728, 110725194]$ \(y^2+xy+y=x^3+x^2-601728x+110725194\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, $\ldots$ $[(-99, 13062)]$
273273.f2 273273.f \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.017944524$ $[1, 1, 1, 113987, 12242810]$ \(y^2+xy+y=x^3+x^2+113987x+12242810\) 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, $\ldots$ $[(-22, 3129)]$
273273.g1 273273.g \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -9072008, 1777252784]$ \(y^2+xy+y=x^3+x^2-9072008x+1777252784\) 2.3.0.a.1, 546.6.0.?, 572.6.0.?, 924.6.0.?, 12012.12.0.? $[ ]$
273273.g2 273273.g \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 2231557, 221882240]$ \(y^2+xy+y=x^3+x^2+2231557x+221882240\) 2.3.0.a.1, 286.6.0.?, 924.6.0.?, 1092.6.0.?, 12012.12.0.? $[ ]$
273273.h1 273273.h \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.367020653$ $[1, 1, 1, -7747048, 8274591632]$ \(y^2+xy+y=x^3+x^2-7747048x+8274591632\) 2.3.0.a.1, 308.6.0.?, 546.6.0.?, 1716.6.0.?, 12012.12.0.? $[(58108/7, 9233664/7)]$
273273.h2 273273.h \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $10.73404130$ $[1, 1, 1, -4558863, 15147043218]$ \(y^2+xy+y=x^3+x^2-4558863x+15147043218\) 2.3.0.a.1, 308.6.0.?, 1092.6.0.?, 1716.6.0.?, 12012.12.0.? $[(4305559/71, 38853141901/71)]$
273273.i1 273273.i \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -4313, -114808]$ \(y^2+xy+y=x^3+x^2-4313x-114808\) 132.2.0.? $[ ]$
273273.j1 273273.j \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $43.44209660$ $[1, 1, 1, -38353624, -91287904492]$ \(y^2+xy+y=x^3+x^2-38353624x-91287904492\) 858.2.0.? $[(-793016060784046176188/463432297, 395650744929046272590011858911/463432297)]$
273273.k1 273273.k \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 401456, -47465566]$ \(y^2+xy+y=x^3+x^2+401456x-47465566\) 4.2.0.a.1, 264.4.0.? $[ ]$
273273.l1 273273.l \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -11320, -375649]$ \(y^2+xy=x^3-11320x-375649\) 2.3.0.a.1, 546.6.0.?, 572.6.0.?, 924.6.0.?, 12012.12.0.? $[ ]$
273273.l2 273273.l \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 23715, -2232504]$ \(y^2+xy=x^3+23715x-2232504\) 2.3.0.a.1, 286.6.0.?, 924.6.0.?, 1092.6.0.?, 12012.12.0.? $[ ]$
273273.m1 273273.m \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.904427092$ $[1, 0, 0, -782727, 266033676]$ \(y^2+xy=x^3-782727x+266033676\) 858.2.0.? $[(-493, 23315)]$
273273.n1 273273.n \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.384231859$ $[1, 0, 0, -1213339, -514019962]$ \(y^2+xy=x^3-1213339x-514019962\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 88.12.0.?, 264.24.0.?, $\ldots$ $[(-622, 674)]$
273273.n2 273273.n \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.192115929$ $[1, 0, 0, -95404, -3570841]$ \(y^2+xy=x^3-95404x-3570841\) 2.6.0.a.1, 12.12.0.a.1, 44.12.0.b.1, 132.24.0.?, 364.12.0.?, $\ldots$ $[(599, 12122)]$
273273.n3 273273.n \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.384231859$ $[1, 0, 0, -53999, 4784688]$ \(y^2+xy=x^3-53999x+4784688\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 66.6.0.a.1, 88.12.0.?, $\ldots$ $[(193, 1153)]$
273273.n4 273273.n \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.384231859$ $[1, 0, 0, 360051, -27709956]$ \(y^2+xy=x^3+360051x-27709956\) 2.3.0.a.1, 4.6.0.c.1, 22.6.0.a.1, 24.12.0.ba.1, 44.12.0.g.1, $\ldots$ $[(456, 14982)]$
273273.o1 273273.o \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -91848884, 338804352249]$ \(y^2+xy=x^3-91848884x+338804352249\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 156.12.0.?, 264.12.0.?, $\ldots$ $[ ]$
273273.o2 273273.o \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -5767889, 5240496624]$ \(y^2+xy=x^3-5767889x+5240496624\) 2.6.0.a.1, 28.12.0-2.a.1.1, 132.12.0.?, 156.12.0.?, 572.12.0.?, $\ldots$ $[ ]$
273273.o3 273273.o \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -757884, -131230737]$ \(y^2+xy=x^3-757884x-131230737\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 156.12.0.?, 264.12.0.?, $\ldots$ $[ ]$
273273.o4 273273.o \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 153026, 15487232123]$ \(y^2+xy=x^3+153026x+15487232123\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 264.12.0.?, 286.6.0.?, $\ldots$ $[ ]$
273273.p1 273273.p \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -211338, 38745069]$ \(y^2+xy=x^3-211338x+38745069\) 132.2.0.? $[ ]$
273273.q1 273273.q \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -158103, -24146760]$ \(y^2+xy=x^3-158103x-24146760\) 2.3.0.a.1, 308.6.0.?, 546.6.0.?, 1716.6.0.?, 12012.12.0.? $[ ]$
273273.q2 273273.q \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -93038, -44173767]$ \(y^2+xy=x^3-93038x-44173767\) 2.3.0.a.1, 308.6.0.?, 1092.6.0.?, 1716.6.0.?, 12012.12.0.? $[ ]$
273273.r1 273273.r \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -521707313, -4585621837434]$ \(y^2+xy=x^3-521707313x-4585621837434\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
273273.r2 273273.r \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -28697978, -89475304101]$ \(y^2+xy=x^3-28697978x-89475304101\) 2.3.0.a.1, 12.6.0.b.1, 286.6.0.?, 1716.12.0.? $[ ]$
273273.s1 273273.s \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -29484673, -38067195622]$ \(y^2+xy=x^3-29484673x-38067195622\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, $\ldots$ $[ ]$
273273.s2 273273.s \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 5585362, -4182527805]$ \(y^2+xy=x^3+5585362x-4182527805\) 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, $\ldots$ $[ ]$
273273.t1 273273.t \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $11.87466013$ $[1, 0, 0, -30635732, -65268881133]$ \(y^2+xy=x^3-30635732x-65268881133\) 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.1, 56.12.0-4.c.1.5, 88.12.0.?, $\ldots$ $[(-2689154/29, 48917003/29)]$
273273.t2 273273.t \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.968665032$ $[1, 0, 0, -5709922, 4010610785]$ \(y^2+xy=x^3-5709922x+4010610785\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 52.12.0-4.c.1.2, 88.12.0.?, $\ldots$ $[(755, 11030)]$
273273.t3 273273.t \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.937330065$ $[1, 0, 0, -1942067, -989332800]$ \(y^2+xy=x^3-1942067x-989332800\) 2.6.0.a.1, 28.12.0-2.a.1.1, 44.12.0-2.a.1.2, 52.12.0-2.a.1.1, 308.24.0.?, $\ldots$ $[(-923, 4594)]$
273273.t4 273273.t \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $11.87466013$ $[1, 0, 0, 86778, -62962173]$ \(y^2+xy=x^3+86778x-62962173\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 88.12.0.?, 104.12.0.?, $\ldots$ $[(138711/19, 34420323/19)]$
273273.u1 273273.u \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -196711187, 1061898796230]$ \(y^2+xy=x^3-196711187x+1061898796230\) 2.3.0.a.1, 308.6.0.?, 364.6.0.?, 572.6.0.?, 4004.12.0.? $[ ]$
273273.u2 273273.u \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -12086292, 17180365383]$ \(y^2+xy=x^3-12086292x+17180365383\) 2.3.0.a.1, 286.6.0.?, 308.6.0.?, 364.6.0.?, 4004.12.0.? $[ ]$
273273.v1 273273.v \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -8350287, 6192147870]$ \(y^2+xy=x^3-8350287x+6192147870\) 2.3.0.a.1, 308.6.0.?, 364.6.0.?, 572.6.0.?, 4004.12.0.? $[ ]$
273273.v2 273273.v \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 1481808, 660611223]$ \(y^2+xy=x^3+1481808x+660611223\) 2.3.0.a.1, 286.6.0.?, 308.6.0.?, 364.6.0.?, 4004.12.0.? $[ ]$
273273.w1 273273.w \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.978639765$ $[0, -1, 1, -5945, 173942]$ \(y^2+y=x^3-x^2-5945x+173942\) 154.2.0.? $[(-16, 514)]$
273273.x1 273273.x \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.597065651$ $[0, -1, 1, -304425, -64734538]$ \(y^2+y=x^3-x^2-304425x-64734538\) 6006.2.0.? $[(1790, 71571)]$
273273.y1 273273.y \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $14.62051664$ $[0, -1, 1, -271462221, -1722025970260]$ \(y^2+y=x^3-x^2-271462221x-1722025970260\) 182.2.0.? $[(580935654/155, 9008004640442/155)]$
273273.z1 273273.z \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1004761, 378132159]$ \(y^2+y=x^3-x^2-1004761x+378132159\) 154.2.0.? $[ ]$
273273.ba1 273273.ba \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.752282801$ $[0, 1, 1, -20505, -1108285]$ \(y^2+y=x^3+x^2-20505x-1108285\) 154.2.0.? $[(-75, 115)]$
273273.bb1 273273.bb \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.718745489$ $[0, 1, 1, 5521, 23846]$ \(y^2+y=x^3+x^2+5521x+23846\) 6.2.0.a.1 $[(4, 214)]$
273273.bc1 273273.bc \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -13492509, -19082033512]$ \(y^2+y=x^3+x^2-13492509x-19082033512\) 6.2.0.a.1 $[ ]$
273273.bd1 273273.bd \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -48029960099, 4051489624129406]$ \(y^2+y=x^3+x^2-48029960099x+4051489624129406\) 154.2.0.? $[ ]$
273273.be1 273273.be \( 3 \cdot 7^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.649597093$ $[0, 1, 1, -11041, 11418502]$ \(y^2+y=x^3+x^2-11041x+11418502\) 182.2.0.? $[(-178, 2788)]$
Next   displayed columns for results