Learn more

Refine search


Results (1-50 of 128 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
27200.a1 27200.a \( 2^{6} \cdot 5^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $0.368487103$ $[0, 0, 0, 20, 400]$ \(y^2=x^3+20x+400\) 680.2.0.? $[(10, 40), (-6, 8)]$
27200.b1 27200.b \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.718867953$ $[0, 0, 0, 500, -50000]$ \(y^2=x^3+500x-50000\) 680.2.0.? $[(100, 1000)]$
27200.c1 27200.c \( 2^{6} \cdot 5^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $0.173565886$ $[0, 0, 0, -544300, 155242000]$ \(y^2=x^3-544300x+155242000\) 680.2.0.? $[(330, 3400), (160, 8500)]$
27200.d1 27200.d \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 500, -9200]$ \(y^2=x^3+500x-9200\) 68.2.0.a.1 $[ ]$
27200.e1 27200.e \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.471450825$ $[0, 0, 0, 12500, 1150000]$ \(y^2=x^3+12500x+1150000\) 68.2.0.a.1 $[(54, 1408)]$
27200.f1 27200.f \( 2^{6} \cdot 5^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $0.375931153$ $[0, 0, 0, -16300, 802000]$ \(y^2=x^3-16300x+802000\) 680.2.0.? $[(10, 800), (74, 32)]$
27200.g1 27200.g \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.781748635$ $[0, 1, 0, -1633, 16863]$ \(y^2=x^3+x^2-1633x+16863\) 2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? $[(-1, 136)]$
27200.g2 27200.g \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.563497271$ $[0, 1, 0, -633, -6137]$ \(y^2=x^3+x^2-633x-6137\) 2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? $[(-13, 8)]$
27200.h1 27200.h \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $11.65601806$ $[0, 1, 0, -6669633, -1306311137]$ \(y^2=x^3+x^2-6669633x-1306311137\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[(-411518/13, 49239975/13)]$
27200.h2 27200.h \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.885339356$ $[0, 1, 0, -4085633, 3177200863]$ \(y^2=x^3+x^2-4085633x+3177200863\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[(1138, 1675)]$
27200.h3 27200.h \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.942669678$ $[0, 1, 0, -3957633, 3385712863]$ \(y^2=x^3+x^2-3957633x+3385712863\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(-1077, 80000)]$
27200.h4 27200.h \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $5.828009034$ $[0, 1, 0, 26098367, -10317511137]$ \(y^2=x^3+x^2+26098367x-10317511137\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(60691/3, 18556928/3)]$
27200.i1 27200.i \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -13633, 604863]$ \(y^2=x^3+x^2-13633x+604863\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 40.12.0-4.b.1.3, 68.12.0.e.1, $\ldots$ $[ ]$
27200.i2 27200.i \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -5633, 1316863]$ \(y^2=x^3+x^2-5633x+1316863\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 68.12.0.d.1, 136.24.0.?, $\ldots$ $[ ]$
27200.j1 27200.j \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.009827100$ $[0, 1, 0, -4833, -125537]$ \(y^2=x^3+x^2-4833x-125537\) 2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? $[(-43, 68)]$
27200.j2 27200.j \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.504913550$ $[0, 1, 0, -833, 6463]$ \(y^2=x^3+x^2-833x+6463\) 2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? $[(7, 32)]$
27200.k1 27200.k \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2233, -41337]$ \(y^2=x^3+x^2-2233x-41337\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 40.12.0-4.b.1.3, 68.12.0.e.1, $\ldots$ $[ ]$
27200.k2 27200.k \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -108, -962]$ \(y^2=x^3+x^2-108x-962\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 68.12.0.d.1, 136.24.0.?, $\ldots$ $[ ]$
27200.l1 27200.l \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -354033, 80962063]$ \(y^2=x^3+x^2-354033x+80962063\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 40.12.0-4.b.1.2, 68.24.0.f.1, $\ldots$ $[ ]$
27200.l2 27200.l \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -352033, 81924063]$ \(y^2=x^3+x^2-352033x+81924063\) 2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 68.12.0.d.1, 136.24.0.?, $\ldots$ $[ ]$
27200.m1 27200.m \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.164241078$ $[0, 1, 0, -192633, 32477863]$ \(y^2=x^3+x^2-192633x+32477863\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 10.6.0.a.1, 20.12.0.e.1, $\ldots$ $[(298, 1275)]$
27200.m2 27200.m \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.328482156$ $[0, 1, 0, -12008, 507238]$ \(y^2=x^3+x^2-12008x+507238\) 2.3.0.a.1, 4.12.0-4.a.1.2, 20.24.0-20.d.1.2, 680.48.0.? $[(53, 150)]$
27200.n1 27200.n \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.988699973$ $[0, 1, 0, -12033, 436063]$ \(y^2=x^3+x^2-12033x+436063\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 40.12.0-4.b.1.2, 68.12.0.e.1, $\ldots$ $[(18, 475)]$
27200.n2 27200.n \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.494349986$ $[0, 1, 0, 19967, 2388063]$ \(y^2=x^3+x^2+19967x+2388063\) 2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 68.12.0.d.1, 136.24.0.?, $\ldots$ $[(-53, 1088)]$
27200.o1 27200.o \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.863348760$ $[0, 1, 0, -433, 1263]$ \(y^2=x^3+x^2-433x+1263\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 40.12.0-4.b.1.2, 68.24.0.f.1, $\ldots$ $[(19, 16)]$
27200.o2 27200.o \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.931674380$ $[0, 1, 0, 1567, 11263]$ \(y^2=x^3+x^2+1567x+11263\) 2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 68.12.0.d.1, 136.24.0.?, $\ldots$ $[(43, 400)]$
27200.p1 27200.p \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -180833, -20513537]$ \(y^2=x^3+x^2-180833x-20513537\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ $[ ]$
27200.p2 27200.p \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -164833, -25809537]$ \(y^2=x^3+x^2-164833x-25809537\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ $[ ]$
27200.p3 27200.p \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -68833, 6926463]$ \(y^2=x^3+x^2-68833x+6926463\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 24.24.0.y.1, $\ldots$ $[ ]$
27200.p4 27200.p \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4833, 78463]$ \(y^2=x^3+x^2-4833x+78463\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 24.24.0.bw.1, $\ldots$ $[ ]$
27200.q1 27200.q \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.258845316$ $[0, -1, 0, 2171167, -200674463]$ \(y^2=x^3-x^2+2171167x-200674463\) 68.2.0.a.1 $[(9417, 924800)]$
27200.r1 27200.r \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 86847, 1570657]$ \(y^2=x^3-x^2+86847x+1570657\) 68.2.0.a.1 $[ ]$
27200.s1 27200.s \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.806336412$ $[0, -1, 0, -33, -20063]$ \(y^2=x^3-x^2-33x-20063\) 680.2.0.? $[(57, 400)]$
27200.t1 27200.t \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.077467210$ $[0, -1, 0, 6367, 155137]$ \(y^2=x^3-x^2+6367x+155137\) 680.2.0.? $[(32, 625)]$
27200.u1 27200.u \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4833, -142463]$ \(y^2=x^3-x^2-4833x-142463\) 68.2.0.a.1 $[ ]$
27200.v1 27200.v \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -108, -398]$ \(y^2=x^3-x^2-108x-398\) 68.2.0.a.1 $[ ]$
27200.w1 27200.w \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.209687655$ $[0, -1, 0, -753, 8497]$ \(y^2=x^3-x^2-753x+8497\) 3.4.0.a.1, 68.2.0.a.1, 120.8.0.?, 204.8.0.?, 2040.16.0.? $[(33, 136)]$
27200.w2 27200.w \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.629062967$ $[0, -1, 0, 47, 17]$ \(y^2=x^3-x^2+47x+17\) 3.4.0.a.1, 68.2.0.a.1, 120.8.0.?, 204.8.0.?, 2040.16.0.? $[(1, 8)]$
27200.x1 27200.x \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -18833, -1024463]$ \(y^2=x^3-x^2-18833x-1024463\) 3.4.0.a.1, 24.8.0-3.a.1.1, 68.2.0.a.1, 204.8.0.?, 408.16.0.? $[ ]$
27200.x2 27200.x \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1167, -4463]$ \(y^2=x^3-x^2+1167x-4463\) 3.4.0.a.1, 24.8.0-3.a.1.2, 68.2.0.a.1, 204.8.0.?, 408.16.0.? $[ ]$
27200.y1 27200.y \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -2708, 55162]$ \(y^2=x^3-x^2-2708x+55162\) 68.2.0.a.1 $[ ]$
27200.z1 27200.z \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.584058931$ $[0, -1, 0, -193, 1217]$ \(y^2=x^3-x^2-193x+1217\) 68.2.0.a.1 $[(1, 32)]$
27200.ba1 27200.ba \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.005049870$ $[0, -1, 0, -1153, -19423]$ \(y^2=x^3-x^2-1153x-19423\) 680.2.0.? $[(53, 256)]$
27200.bb1 27200.bb \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.262493618$ $[0, -1, 0, -28833, 2485537]$ \(y^2=x^3-x^2-28833x+2485537\) 680.2.0.? $[(1017, 32000)]$
27200.bc1 27200.bc \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.351960355$ $[0, -1, 0, -10625633, 13764923137]$ \(y^2=x^3-x^2-10625633x+13764923137\) 3.4.0.a.1, 102.8.0.?, 120.8.0.?, 680.2.0.?, 2040.16.0.? $[(4752, 265625)]$
27200.bc2 27200.bc \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $4.055881067$ $[0, -1, 0, 638367, 60731137]$ \(y^2=x^3-x^2+638367x+60731137\) 3.4.0.a.1, 102.8.0.?, 120.8.0.?, 680.2.0.?, 2040.16.0.? $[(232, 14875)]$
27200.bd1 27200.bd \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.443012299$ $[0, -1, 0, -4033, -412063]$ \(y^2=x^3-x^2-4033x-412063\) 3.4.0.a.1, 102.8.0.?, 120.8.0.?, 680.2.0.?, 2040.16.0.? $[(101, 448)]$
27200.bd2 27200.bd \( 2^{6} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.814337433$ $[0, -1, 0, 35967, 10587937]$ \(y^2=x^3-x^2+35967x+10587937\) 3.4.0.a.1, 102.8.0.?, 120.8.0.?, 680.2.0.?, 2040.16.0.? $[(373, 8704)]$
27200.be1 27200.be \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -208, 5162]$ \(y^2=x^3-x^2-208x+5162\) 68.2.0.a.1 $[ ]$
27200.bf1 27200.bf \( 2^{6} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -8, -38]$ \(y^2=x^3-x^2-8x-38\) 68.2.0.a.1 $[ ]$
Next   displayed columns for results