| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 267589.a1 |
267589a1 |
267589.a |
267589a |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( 7^{6} \cdot 43 \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10922$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$140616$ |
$0.503534$ |
$481890304/5461$ |
$0.78193$ |
$2.53406$ |
$[0, 1, 1, -800, 8362]$ |
\(y^2+y=x^3+x^2-800x+8362\) |
10922.2.0.? |
$[ ]$ |
$1$ |
| 267589.b1 |
267589b1 |
267589.b |
267589b |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( 7^{6} \cdot 43^{5} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10922$ |
$2$ |
$0$ |
$14.35918341$ |
$1$ |
|
$0$ |
$1577400$ |
$1.930933$ |
$74631223079501824/18670072261$ |
$0.93189$ |
$4.04305$ |
$[0, 1, 1, -429795, 108286063]$ |
\(y^2+y=x^3+x^2-429795x+108286063\) |
10922.2.0.? |
$[(3205213/98, 1373372223/98)]$ |
$1$ |
| 267589.c1 |
267589c2 |
267589.c |
267589c |
$2$ |
$3$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( - 7^{7} \cdot 43 \cdot 127^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$229362$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2799360$ |
$2.049305$ |
$-3114182784544768000/616563283$ |
$0.90872$ |
$4.34161$ |
$[0, -1, 1, -1490743, 701068472]$ |
\(y^2+y=x^3-x^2-1490743x+701068472\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 32766.8.0.?, 76454.2.0.?, 229362.16.0.? |
$[ ]$ |
$1$ |
| 267589.c2 |
267589c1 |
267589.c |
267589c |
$2$ |
$3$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( - 7^{9} \cdot 43^{3} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$229362$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$933120$ |
$1.500000$ |
$-3738308608000/3463404427$ |
$0.81994$ |
$3.32722$ |
$[0, -1, 1, -15843, 1243171]$ |
\(y^2+y=x^3-x^2-15843x+1243171\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 32766.8.0.?, 76454.2.0.?, 229362.16.0.? |
$[ ]$ |
$1$ |
| 267589.d1 |
267589d1 |
267589.d |
267589d |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( - 7^{9} \cdot 43 \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$76454$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$656640$ |
$1.071524$ |
$-1104224813056/1873123$ |
$0.78823$ |
$3.15339$ |
$[0, -1, 1, -10551, 421294]$ |
\(y^2+y=x^3-x^2-10551x+421294\) |
76454.2.0.? |
$[ ]$ |
$1$ |
| 267589.e1 |
267589e1 |
267589.e |
267589e |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( 7^{3} \cdot 43^{3} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152908$ |
$2$ |
$0$ |
$0.471544265$ |
$1$ |
|
$4$ |
$249984$ |
$0.662361$ |
$1404551713599/10097389$ |
$0.81494$ |
$2.70528$ |
$[1, -1, 0, -1633, 25654]$ |
\(y^2+xy=x^3-x^2-1633x+25654\) |
152908.2.0.? |
$[(18, 34)]$ |
$1$ |
| 267589.f1 |
267589f1 |
267589.f |
267589f |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( - 7^{15} \cdot 43 \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$76454$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2218752$ |
$1.835333$ |
$166220772680087/220371047827$ |
$0.84445$ |
$3.57481$ |
$[1, 0, 1, 56128, 5820021]$ |
\(y^2+xy+y=x^3+56128x+5820021\) |
76454.2.0.? |
$[ ]$ |
$1$ |
| 267589.g1 |
267589g1 |
267589.g |
267589g |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( 7^{9} \cdot 43^{3} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152908$ |
$2$ |
$0$ |
$12.23502249$ |
$1$ |
|
$0$ |
$1749888$ |
$1.635317$ |
$1404551713599/10097389$ |
$0.81494$ |
$3.63953$ |
$[1, -1, 0, -80026, -8639275]$ |
\(y^2+xy=x^3-x^2-80026x-8639275\) |
152908.2.0.? |
$[(31249108/309, 6421355345/309)]$ |
$1$ |
| 267589.h1 |
267589h1 |
267589.h |
267589h |
$1$ |
$1$ |
\( 7^{2} \cdot 43 \cdot 127 \) |
\( - 7^{9} \cdot 43 \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$76454$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$352512$ |
$0.855484$ |
$512000/1873123$ |
$0.77728$ |
$2.68645$ |
$[0, 1, 1, 82, -22557]$ |
\(y^2+y=x^3+x^2+82x-22557\) |
76454.2.0.? |
$[ ]$ |
$1$ |