| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 26714.a1 |
26714d1 |
26714.a |
26714d |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{3} \cdot 19^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$7.257445882$ |
$1$ |
|
$0$ |
$519840$ |
$2.174110$ |
$7784759730259/296$ |
$0.93902$ |
$5.51196$ |
$[1, 0, 1, -2832053, -1834661400]$ |
\(y^2+xy+y=x^3-2832053x-1834661400\) |
5624.2.0.? |
$[(-47606/7, 167201/7)]$ |
$1$ |
| 26714.b1 |
26714j1 |
26714.b |
26714j |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{5} \cdot 19^{11} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$5.866432464$ |
$1$ |
|
$2$ |
$504000$ |
$2.021011$ |
$25601949246817/2931701216$ |
$0.90899$ |
$4.76215$ |
$[1, 0, 1, -221662, 35956848]$ |
\(y^2+xy+y=x^3-221662x+35956848\) |
5624.2.0.? |
$[(164, 1923)]$ |
$1$ |
| 26714.c1 |
26714i1 |
26714.c |
26714i |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{7} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.518603588$ |
$1$ |
|
$4$ |
$80640$ |
$1.408695$ |
$-761048497/3329408$ |
$0.85394$ |
$3.95017$ |
$[1, 1, 0, -6866, 637876]$ |
\(y^2+xy=x^3+x^2-6866x+637876\) |
152.2.0.? |
$[(359, 6499)]$ |
$1$ |
| 26714.d1 |
26714g1 |
26714.d |
26714g |
$2$ |
$3$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{3} \cdot 19^{9} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$1.720922$ |
$-677993136625/75119768$ |
$0.88055$ |
$4.42308$ |
$[1, 1, 0, -66070, -7162612]$ |
\(y^2+xy=x^3+x^2-66070x-7162612\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 57.8.0-3.a.1.1, 152.2.0.?, 456.16.0.? |
$[ ]$ |
$1$ |
| 26714.d2 |
26714g2 |
26714.d |
26714g |
$2$ |
$3$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2 \cdot 19^{7} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$2.270229$ |
$166874624291375/97497603542$ |
$1.05957$ |
$4.94606$ |
$[1, 1, 0, 414060, 10218094]$ |
\(y^2+xy=x^3+x^2+414060x+10218094\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 57.8.0-3.a.1.2, 152.2.0.?, 456.16.0.? |
$[ ]$ |
$1$ |
| 26714.e1 |
26714a1 |
26714.e |
26714a |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{6} \cdot 19^{4} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.497557400$ |
$1$ |
|
$6$ |
$13608$ |
$0.353842$ |
$-12973257/2368$ |
$0.98369$ |
$2.78921$ |
$[1, -1, 0, -248, -1664]$ |
\(y^2+xy=x^3-x^2-248x-1664\) |
148.2.0.? |
$[(24, 64)]$ |
$1$ |
| 26714.f1 |
26714h1 |
26714.f |
26714h |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{3} \cdot 19^{7} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1.002882544$ |
$1$ |
|
$2$ |
$25920$ |
$0.912441$ |
$33076161/5624$ |
$0.76994$ |
$3.43188$ |
$[1, -1, 0, -2414, -37764]$ |
\(y^2+xy=x^3-x^2-2414x-37764\) |
5624.2.0.? |
$[(81, 501)]$ |
$1$ |
| 26714.g1 |
26714c1 |
26714.g |
26714c |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{9} \cdot 19^{9} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$7.243418397$ |
$1$ |
|
$0$ |
$656640$ |
$2.614349$ |
$221774710877/959570432$ |
$0.95121$ |
$5.34616$ |
$[1, 0, 1, 864948, 788041866]$ |
\(y^2+xy+y=x^3+864948x+788041866\) |
152.2.0.? |
$[(-41612/9, 10705166/9)]$ |
$1$ |
| 26714.h1 |
26714b1 |
26714.h |
26714b |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{15} \cdot 19^{3} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$3.557269893$ |
$1$ |
|
$0$ |
$76800$ |
$1.485762$ |
$906196171733/61412507648$ |
$1.00310$ |
$4.03420$ |
$[1, 0, 1, 3830, 983548]$ |
\(y^2+xy+y=x^3+3830x+983548\) |
152.2.0.? |
$[(-497/6, 209471/6)]$ |
$1$ |
| 26714.i1 |
26714e1 |
26714.i |
26714e |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{9} \cdot 19^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$191520$ |
$1.720903$ |
$36264691/18944$ |
$0.86105$ |
$4.30752$ |
$[1, 1, 0, -47298, 1215476]$ |
\(y^2+xy=x^3+x^2-47298x+1215476\) |
5624.2.0.? |
$[ ]$ |
$1$ |
| 26714.j1 |
26714f2 |
26714.j |
26714f |
$2$ |
$2$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{3} \cdot 19^{9} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$597360$ |
$1.888937$ |
$8132727331/10952$ |
$0.88140$ |
$4.83855$ |
$[1, 1, 0, -287363, -59342635]$ |
\(y^2+xy=x^3+x^2-287363x-59342635\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 2812.6.0.?, 5624.12.0.? |
$[ ]$ |
$1$ |
| 26714.j2 |
26714f1 |
26714.j |
26714f |
$2$ |
$2$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{6} \cdot 19^{9} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$1$ |
$25$ |
$5$ |
$1$ |
$298680$ |
$1.542364$ |
$-753571/2368$ |
$0.80668$ |
$4.11005$ |
$[1, 1, 0, -13003, -1452675]$ |
\(y^2+xy=x^3+x^2-13003x-1452675\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 1406.6.0.?, 5624.12.0.? |
$[ ]$ |
$1$ |
| 26714.k1 |
26714k1 |
26714.k |
26714k |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{15} \cdot 19^{11} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$12.22513287$ |
$1$ |
|
$0$ |
$2592000$ |
$2.846401$ |
$-186688297520577/111076295671808$ |
$1.04874$ |
$5.63758$ |
$[1, -1, 0, -429838, -3479583916]$ |
\(y^2+xy=x^3-x^2-429838x-3479583916\) |
152.2.0.? |
$[(932076511/51, 28432382453467/51)]$ |
$1$ |
| 26714.l1 |
26714l1 |
26714.l |
26714l |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{9} \cdot 19^{3} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$0.283482386$ |
$1$ |
|
$18$ |
$10080$ |
$0.248684$ |
$36264691/18944$ |
$0.86105$ |
$2.57430$ |
$[1, 0, 0, -131, -191]$ |
\(y^2+xy=x^3-131x-191\) |
5624.2.0.? |
$[(-8, 23), (30, 137)]$ |
$1$ |
| 26714.m1 |
26714s1 |
26714.m |
26714s |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{17} \cdot 19^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$0.292204654$ |
$1$ |
|
$6$ |
$440640$ |
$2.264359$ |
$1007488615738249/33263845376$ |
$0.93101$ |
$5.12245$ |
$[1, 0, 0, -753956, 244624144]$ |
\(y^2+xy=x^3-753956x+244624144\) |
5624.2.0.? |
$[(828, 13304)]$ |
$1$ |
| 26714.n1 |
26714m2 |
26714.n |
26714m |
$2$ |
$2$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{3} \cdot 19^{3} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31440$ |
$0.416718$ |
$8132727331/10952$ |
$0.88140$ |
$3.10533$ |
$[1, 0, 0, -796, 8568]$ |
\(y^2+xy=x^3-796x+8568\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 2812.6.0.?, 5624.12.0.? |
$[ ]$ |
$1$ |
| 26714.n2 |
26714m1 |
26714.n |
26714m |
$2$ |
$2$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{6} \cdot 19^{3} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$15720$ |
$0.070144$ |
$-753571/2368$ |
$0.80668$ |
$2.37683$ |
$[1, 0, 0, -36, 208]$ |
\(y^2+xy=x^3-36x+208\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 1406.6.0.?, 5624.12.0.? |
$[ ]$ |
$1$ |
| 26714.o1 |
26714o1 |
26714.o |
26714o |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{9} \cdot 19^{3} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.202940235$ |
$1$ |
|
$8$ |
$34560$ |
$1.142130$ |
$221774710877/959570432$ |
$0.95121$ |
$3.61294$ |
$[1, 1, 1, 2396, -113883]$ |
\(y^2+xy+y=x^3+x^2+2396x-113883\) |
152.2.0.? |
$[(45, 273)]$ |
$1$ |
| 26714.p1 |
26714n1 |
26714.p |
26714n |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{15} \cdot 19^{9} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1.203300299$ |
$1$ |
|
$0$ |
$1459200$ |
$2.957981$ |
$906196171733/61412507648$ |
$1.00310$ |
$5.76742$ |
$[1, 1, 1, 1382803, -6743391837]$ |
\(y^2+xy+y=x^3+x^2+1382803x-6743391837\) |
152.2.0.? |
$[(19039/3, 2001692/3)]$ |
$1$ |
| 26714.q1 |
26714t1 |
26714.q |
26714t |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{6} \cdot 19^{10} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$258552$ |
$1.826061$ |
$-12973257/2368$ |
$0.98369$ |
$4.52244$ |
$[1, -1, 1, -89596, 11861247]$ |
\(y^2+xy+y=x^3-x^2-89596x+11861247\) |
148.2.0.? |
$[ ]$ |
$1$ |
| 26714.r1 |
26714r1 |
26714.r |
26714r |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2^{7} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.285316626$ |
$1$ |
|
$6$ |
$80640$ |
$1.475554$ |
$-49552182217/3329408$ |
$0.85521$ |
$4.16001$ |
$[1, 0, 0, -27624, 1864640]$ |
\(y^2+xy=x^3-27624x+1864640\) |
152.2.0.? |
$[(-8, 1448)]$ |
$1$ |
| 26714.s1 |
26714q1 |
26714.s |
26714q |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( - 2 \cdot 19^{9} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$4.550605827$ |
$1$ |
|
$0$ |
$103680$ |
$1.554859$ |
$18884848247/18779942$ |
$0.86750$ |
$4.05460$ |
$[1, 0, 0, 20028, -923002]$ |
\(y^2+xy=x^3+20028x-923002\) |
152.2.0.? |
$[(16099/2, 2027883/2)]$ |
$1$ |
| 26714.t1 |
26714p1 |
26714.t |
26714p |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 37 \) |
\( 2^{3} \cdot 19^{3} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$0.991094373$ |
$1$ |
|
$0$ |
$27360$ |
$0.701893$ |
$7784759730259/296$ |
$0.93902$ |
$3.77874$ |
$[1, 1, 1, -7845, 264179]$ |
\(y^2+xy+y=x^3+x^2-7845x+264179\) |
5624.2.0.? |
$[(457/3, -680/3)]$ |
$1$ |