Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
26714.a1 26714.a \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $7.257445882$ $[1, 0, 1, -2832053, -1834661400]$ \(y^2+xy+y=x^3-2832053x-1834661400\) 5624.2.0.? $[(-47606/7, 167201/7)]$
26714.b1 26714.b \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $5.866432464$ $[1, 0, 1, -221662, 35956848]$ \(y^2+xy+y=x^3-221662x+35956848\) 5624.2.0.? $[(164, 1923)]$
26714.c1 26714.c \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.518603588$ $[1, 1, 0, -6866, 637876]$ \(y^2+xy=x^3+x^2-6866x+637876\) 152.2.0.? $[(359, 6499)]$
26714.d1 26714.d \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -66070, -7162612]$ \(y^2+xy=x^3+x^2-66070x-7162612\) 3.4.0.a.1, 24.8.0-3.a.1.6, 57.8.0-3.a.1.1, 152.2.0.?, 456.16.0.? $[ ]$
26714.d2 26714.d \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 414060, 10218094]$ \(y^2+xy=x^3+x^2+414060x+10218094\) 3.4.0.a.1, 24.8.0-3.a.1.5, 57.8.0-3.a.1.2, 152.2.0.?, 456.16.0.? $[ ]$
26714.e1 26714.e \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.497557400$ $[1, -1, 0, -248, -1664]$ \(y^2+xy=x^3-x^2-248x-1664\) 148.2.0.? $[(24, 64)]$
26714.f1 26714.f \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.002882544$ $[1, -1, 0, -2414, -37764]$ \(y^2+xy=x^3-x^2-2414x-37764\) 5624.2.0.? $[(81, 501)]$
26714.g1 26714.g \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $7.243418397$ $[1, 0, 1, 864948, 788041866]$ \(y^2+xy+y=x^3+864948x+788041866\) 152.2.0.? $[(-41612/9, 10705166/9)]$
26714.h1 26714.h \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $3.557269893$ $[1, 0, 1, 3830, 983548]$ \(y^2+xy+y=x^3+3830x+983548\) 152.2.0.? $[(-497/6, 209471/6)]$
26714.i1 26714.i \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -47298, 1215476]$ \(y^2+xy=x^3+x^2-47298x+1215476\) 5624.2.0.? $[ ]$
26714.j1 26714.j \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -287363, -59342635]$ \(y^2+xy=x^3+x^2-287363x-59342635\) 2.3.0.a.1, 152.6.0.?, 296.6.0.?, 2812.6.0.?, 5624.12.0.? $[ ]$
26714.j2 26714.j \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -13003, -1452675]$ \(y^2+xy=x^3+x^2-13003x-1452675\) 2.3.0.a.1, 152.6.0.?, 296.6.0.?, 1406.6.0.?, 5624.12.0.? $[ ]$
26714.k1 26714.k \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $12.22513287$ $[1, -1, 0, -429838, -3479583916]$ \(y^2+xy=x^3-x^2-429838x-3479583916\) 152.2.0.? $[(932076511/51, 28432382453467/51)]$
26714.l1 26714.l \( 2 \cdot 19^{2} \cdot 37 \) $2$ $\mathsf{trivial}$ $0.283482386$ $[1, 0, 0, -131, -191]$ \(y^2+xy=x^3-131x-191\) 5624.2.0.? $[(-8, 23), (30, 137)]$
26714.m1 26714.m \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.292204654$ $[1, 0, 0, -753956, 244624144]$ \(y^2+xy=x^3-753956x+244624144\) 5624.2.0.? $[(828, 13304)]$
26714.n1 26714.n \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -796, 8568]$ \(y^2+xy=x^3-796x+8568\) 2.3.0.a.1, 152.6.0.?, 296.6.0.?, 2812.6.0.?, 5624.12.0.? $[ ]$
26714.n2 26714.n \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -36, 208]$ \(y^2+xy=x^3-36x+208\) 2.3.0.a.1, 152.6.0.?, 296.6.0.?, 1406.6.0.?, 5624.12.0.? $[ ]$
26714.o1 26714.o \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.202940235$ $[1, 1, 1, 2396, -113883]$ \(y^2+xy+y=x^3+x^2+2396x-113883\) 152.2.0.? $[(45, 273)]$
26714.p1 26714.p \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.203300299$ $[1, 1, 1, 1382803, -6743391837]$ \(y^2+xy+y=x^3+x^2+1382803x-6743391837\) 152.2.0.? $[(19039/3, 2001692/3)]$
26714.q1 26714.q \( 2 \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -89596, 11861247]$ \(y^2+xy+y=x^3-x^2-89596x+11861247\) 148.2.0.? $[ ]$
26714.r1 26714.r \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.285316626$ $[1, 0, 0, -27624, 1864640]$ \(y^2+xy=x^3-27624x+1864640\) 152.2.0.? $[(-8, 1448)]$
26714.s1 26714.s \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $4.550605827$ $[1, 0, 0, 20028, -923002]$ \(y^2+xy=x^3+20028x-923002\) 152.2.0.? $[(16099/2, 2027883/2)]$
26714.t1 26714.t \( 2 \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.991094373$ $[1, 1, 1, -7845, 264179]$ \(y^2+xy+y=x^3+x^2-7845x+264179\) 5624.2.0.? $[(457/3, -680/3)]$
  displayed columns for results