| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 261072.a1 |
261072a2 |
261072.a |
261072a |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{18} \cdot 3^{22} \cdot 7^{8} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$70778880$ |
$3.430595$ |
$175880497476668041/4994797131072$ |
$1.02330$ |
$5.31515$ |
$[0, 0, 0, -82361307, 280547571850]$ |
\(y^2=x^3-82361307x+280547571850\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[ ]$ |
$1$ |
| 261072.a2 |
261072a1 |
261072.a |
261072a |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{24} \cdot 3^{14} \cdot 7^{7} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$35389440$ |
$3.084023$ |
$519524563319/257532162048$ |
$1.06754$ |
$4.83565$ |
$[0, 0, 0, 1181733, 14462989450]$ |
\(y^2=x^3+1181733x+14462989450\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[ ]$ |
$1$ |
| 261072.b1 |
261072b2 |
261072.b |
261072b |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 3^{12} \cdot 7^{8} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9437184$ |
$2.379826$ |
$389457510402256/1321677$ |
$0.93306$ |
$4.60275$ |
$[0, 0, 0, -4260207, -3384487330]$ |
\(y^2=x^3-4260207x-3384487330\) |
2.3.0.a.1, 12.6.0.c.1, 74.6.0.?, 444.12.0.? |
$[ ]$ |
$1$ |
| 261072.b2 |
261072b1 |
261072.b |
261072b |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{4} \cdot 3^{9} \cdot 7^{10} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4718592$ |
$2.033253$ |
$-1458425767936/88748163$ |
$0.91698$ |
$3.94050$ |
$[0, 0, 0, -262542, -54432385]$ |
\(y^2=x^3-262542x-54432385\) |
2.3.0.a.1, 6.6.0.a.1, 148.6.0.?, 444.12.0.? |
$[ ]$ |
$1$ |
| 261072.c1 |
261072c1 |
261072.c |
261072c |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{8} \cdot 37^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$3.719772379$ |
$1$ |
|
$3$ |
$7520256$ |
$2.430000$ |
$33256413948450816/2481997$ |
$1.11932$ |
$4.73702$ |
$[0, 0, 0, -7444962, 7818830775]$ |
\(y^2=x^3-7444962x+7818830775\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[(1563, 846)]$ |
$1$ |
| 261072.c2 |
261072c2 |
261072.c |
261072c |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{7} \cdot 37^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$7.439544759$ |
$1$ |
|
$1$ |
$15040512$ |
$2.776573$ |
$-2065624967846736/17960084863$ |
$1.06882$ |
$4.73772$ |
$[0, 0, 0, -7429527, 7852864950]$ |
\(y^2=x^3-7429527x+7852864950\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[(7281/2, 151857/2)]$ |
$1$ |
| 261072.d1 |
261072d1 |
261072.d |
261072d |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{7} \cdot 7^{2} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$0.958418$ |
$-105484561/888$ |
$0.83650$ |
$2.98975$ |
$[0, 0, 0, -5187, -144830]$ |
\(y^2=x^3-5187x-144830\) |
888.2.0.? |
$[ ]$ |
$1$ |
| 261072.e1 |
261072e1 |
261072.e |
261072e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{13} \cdot 3^{13} \cdot 7^{2} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$741888$ |
$1.257809$ |
$-105484561/161838$ |
$1.01257$ |
$3.09242$ |
$[0, 0, 0, -5187, -274750]$ |
\(y^2=x^3-5187x-274750\) |
888.2.0.? |
$[ ]$ |
$1$ |
| 261072.f1 |
261072f1 |
261072.f |
261072f |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2419200$ |
$1.707565$ |
$-434163602/8991$ |
$0.89794$ |
$3.67333$ |
$[0, 0, 0, -88347, 10286570]$ |
\(y^2=x^3-88347x+10286570\) |
888.2.0.? |
$[ ]$ |
$1$ |
| 261072.g1 |
261072g2 |
261072.g |
261072g |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{10} \cdot 3^{18} \cdot 7^{3} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$6216$ |
$48$ |
$1$ |
$3.576287627$ |
$1$ |
|
$5$ |
$5111808$ |
$2.295784$ |
$2623761761064412/727542729$ |
$0.98020$ |
$4.39880$ |
$[0, 0, 0, -1824627, -948429790]$ |
\(y^2=x^3-1824627x-948429790\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.br.1, 28.12.0.l.1, 148.12.0.?, $\ldots$ |
$[(-773, 342)]$ |
$1$ |
| 261072.g2 |
261072g1 |
261072.g |
261072g |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{12} \cdot 7^{3} \cdot 37^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$6216$ |
$48$ |
$1$ |
$7.152575255$ |
$1$ |
|
$3$ |
$2555904$ |
$1.949211$ |
$-1711503051568/1366263369$ |
$0.93888$ |
$3.76906$ |
$[0, 0, 0, -99687, -18687130]$ |
\(y^2=x^3-99687x-18687130\) |
2.3.0.a.1, 4.6.0.e.1, 12.12.0.o.1, 14.6.0.b.1, 28.12.0.k.1, $\ldots$ |
$[(3634, 218196)]$ |
$1$ |
| 261072.h1 |
261072h2 |
261072.h |
261072h |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{26} \cdot 3^{18} \cdot 7^{9} \cdot 37^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.11 |
2B |
$6216$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$1$ |
$635830272$ |
$4.505638$ |
$32654559320436510127/16318562238480384$ |
$1.04925$ |
$6.20203$ |
$[0, 0, 0, -3288995787, -26819325368710]$ |
\(y^2=x^3-3288995787x-26819325368710\) |
2.3.0.a.1, 4.12.0.f.1, 28.24.0.i.1, 888.24.0.?, 6216.48.1.? |
$[ ]$ |
$1$ |
| 261072.h2 |
261072h1 |
261072.h |
261072h |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{40} \cdot 3^{12} \cdot 7^{9} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.27 |
2B |
$6216$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$1$ |
$317915136$ |
$4.159065$ |
$398455913564467793/267898853523456$ |
$1.03669$ |
$5.84876$ |
$[0, 0, 0, 757196853, -3225976084870]$ |
\(y^2=x^3+757196853x-3225976084870\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 14.6.0.b.1, 28.12.0.k.1, $\ldots$ |
$[ ]$ |
$1$ |
| 261072.i1 |
261072i1 |
261072.i |
261072i |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{4} \cdot 3^{16} \cdot 7^{10} \cdot 37^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$20643840$ |
$2.913849$ |
$14890887676143616/7181412601797$ |
$1.00657$ |
$4.67260$ |
$[0, 0, 0, -5695662, -2135763245]$ |
\(y^2=x^3-5695662x-2135763245\) |
2.3.0.a.1, 12.6.0.c.1, 74.6.0.?, 444.12.0.? |
$[ ]$ |
$1$ |
| 261072.i2 |
261072i2 |
261072.i |
261072i |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{11} \cdot 7^{8} \cdot 37^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$41287680$ |
$3.260422$ |
$43771480755468464/30550104351963$ |
$0.98764$ |
$4.98134$ |
$[0, 0, 0, 20559273, -16287173210]$ |
\(y^2=x^3+20559273x-16287173210\) |
2.3.0.a.1, 6.6.0.a.1, 148.6.0.?, 444.12.0.? |
$[ ]$ |
$1$ |
| 261072.j1 |
261072j2 |
261072.j |
261072j |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{8} \cdot 7^{3} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3108$ |
$12$ |
$0$ |
$1.154488791$ |
$1$ |
|
$7$ |
$655360$ |
$1.224010$ |
$49430863/12321$ |
$0.84939$ |
$3.08383$ |
$[0, 0, 0, -7707, 196490]$ |
\(y^2=x^3-7707x+196490\) |
2.3.0.a.1, 28.6.0.a.1, 444.6.0.?, 3108.12.0.? |
$[(7, 378)]$ |
$1$ |
| 261072.j2 |
261072j1 |
261072.j |
261072j |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{7} \cdot 7^{3} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3108$ |
$12$ |
$0$ |
$2.308977582$ |
$1$ |
|
$5$ |
$327680$ |
$0.877437$ |
$2048383/111$ |
$0.78823$ |
$2.82859$ |
$[0, 0, 0, -2667, -50470]$ |
\(y^2=x^3-2667x-50470\) |
2.3.0.a.1, 28.6.0.b.1, 444.6.0.?, 1554.6.0.?, 3108.12.0.? |
$[(-26, 36)]$ |
$1$ |
| 261072.k1 |
261072k1 |
261072.k |
261072k |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 3^{9} \cdot 7^{9} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3108$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$9289728$ |
$2.395267$ |
$32673586027248/12691$ |
$0.92350$ |
$4.66831$ |
$[0, 0, 0, -5594967, 5093827830]$ |
\(y^2=x^3-5594967x+5093827830\) |
2.3.0.a.1, 12.6.0.c.1, 1036.6.0.?, 1554.6.0.?, 3108.12.0.? |
$[ ]$ |
$1$ |
| 261072.k2 |
261072k2 |
261072.k |
261072k |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{10} \cdot 3^{9} \cdot 7^{12} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3108$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$18579456$ |
$2.741840$ |
$-8053052543532/161061481$ |
$0.92405$ |
$4.66989$ |
$[0, 0, 0, -5568507, 5144392890]$ |
\(y^2=x^3-5568507x+5144392890\) |
2.3.0.a.1, 6.6.0.a.1, 1036.6.0.?, 3108.12.0.? |
$[ ]$ |
$1$ |
| 261072.l1 |
261072l2 |
261072.l |
261072l |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{10} \cdot 3^{14} \cdot 7^{8} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$1.646839949$ |
$1$ |
|
$7$ |
$5505024$ |
$2.149921$ |
$23366901604/11895093$ |
$0.89845$ |
$3.93450$ |
$[0, 0, 0, -264747, 18189290]$ |
\(y^2=x^3-264747x+18189290\) |
2.3.0.a.1, 28.6.0.c.1, 74.6.0.?, 1036.12.0.? |
$[(-77, 6174)]$ |
$1$ |
| 261072.l2 |
261072l1 |
261072.l |
261072l |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{10} \cdot 7^{7} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1036$ |
$12$ |
$0$ |
$3.293679899$ |
$1$ |
|
$5$ |
$2752512$ |
$1.803349$ |
$1176960944/776223$ |
$0.85020$ |
$3.58375$ |
$[0, 0, 0, 61593, 2198630]$ |
\(y^2=x^3+61593x+2198630\) |
2.3.0.a.1, 14.6.0.b.1, 148.6.0.?, 1036.12.0.? |
$[(113, 3256)]$ |
$1$ |
| 261072.m1 |
261072m1 |
261072.m |
261072m |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{15} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$57.22222985$ |
$1$ |
|
$0$ |
$157386240$ |
$3.833401$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.97625$ |
$[0, 0, 0, -1286432427, -17759551834150]$ |
\(y^2=x^3-1286432427x-17759551834150\) |
888.2.0.? |
$[(3546789428716501607231994973/223983038803, 175759558725131121811128976116696815714304/223983038803)]$ |
$1$ |
| 261072.n1 |
261072n1 |
261072.n |
261072n |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$3.480566490$ |
$1$ |
|
$2$ |
$475200$ |
$0.975296$ |
$65536/37$ |
$0.98850$ |
$2.79836$ |
$[0, 0, 0, -2352, 6860]$ |
\(y^2=x^3-2352x+6860\) |
74.2.0.? |
$[(-34, 218)]$ |
$1$ |
| 261072.o1 |
261072o1 |
261072.o |
261072o |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{19} \cdot 7^{2} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$0.988319265$ |
$1$ |
|
$4$ |
$2316288$ |
$1.692463$ |
$-42416382722/58989951$ |
$0.92168$ |
$3.51200$ |
$[0, 0, 0, -30387, 3761170]$ |
\(y^2=x^3-30387x+3761170\) |
888.2.0.? |
$[(893, 26244)]$ |
$1$ |
| 261072.p1 |
261072p3 |
261072.p |
261072p |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{13} \cdot 3^{7} \cdot 7^{9} \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.5 |
3B |
$18648$ |
$144$ |
$3$ |
$0.464412139$ |
$1$ |
|
$6$ |
$322486272$ |
$4.261658$ |
$-446030778735169043473/267461260498268466$ |
$1.01968$ |
$6.00061$ |
$[0, 0, 0, -1123153059, 20673584421154]$ |
\(y^2=x^3-1123153059x+20673584421154\) |
3.4.0.a.1, 9.36.0.d.2, 84.8.0.?, 252.72.0.?, 888.8.0.?, $\ldots$ |
$[(-32263, 4829832)]$ |
$1$ |
| 261072.p2 |
261072p1 |
261072.p |
261072p |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{21} \cdot 3^{15} \cdot 7^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.4 |
3B |
$18648$ |
$144$ |
$3$ |
$4.179709257$ |
$1$ |
|
$2$ |
$35831808$ |
$3.163044$ |
$-11980221891814513/127896039936$ |
$0.96940$ |
$5.10122$ |
$[0, 0, 0, -33636099, -75774984446]$ |
\(y^2=x^3-33636099x-75774984446\) |
3.4.0.a.1, 9.36.0.d.1, 84.8.0.?, 252.72.0.?, 888.8.0.?, $\ldots$ |
$[(305921, 169174656)]$ |
$1$ |
| 261072.p3 |
261072p2 |
261072.p |
261072p |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{9} \cdot 7^{15} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.1 |
3Cs |
$18648$ |
$144$ |
$3$ |
$1.393236419$ |
$1$ |
|
$4$ |
$107495424$ |
$3.712349$ |
$432326451325256207/441510751160136$ |
$1.00296$ |
$5.38726$ |
$[0, 0, 0, 111153021, -394437548414]$ |
\(y^2=x^3+111153021x-394437548414\) |
3.12.0.a.1, 9.36.0.a.1, 84.24.0.?, 252.72.0.?, 888.24.0.?, $\ldots$ |
$[(6545, 783216)]$ |
$1$ |
| 261072.q1 |
261072q1 |
261072.q |
261072q |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{31} \cdot 3^{9} \cdot 7^{10} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$7.488419663$ |
$1$ |
|
$0$ |
$187536384$ |
$4.121147$ |
$-62604473927499/982600122368$ |
$1.04814$ |
$5.83431$ |
$[0, 0, 0, -234479259, -7328662399926]$ |
\(y^2=x^3-234479259x-7328662399926\) |
24.2.0.b.1 |
$[(648309/5, 250933248/5)]$ |
$1$ |
| 261072.r1 |
261072r1 |
261072.r |
261072r |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7^{3} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6216$ |
$2$ |
$0$ |
$0.472297127$ |
$1$ |
|
$18$ |
$118784$ |
$0.376467$ |
$54/37$ |
$0.80280$ |
$2.23074$ |
$[0, 0, 0, 21, 1274]$ |
\(y^2=x^3+21x+1274\) |
6216.2.0.? |
$[(-7, 28), (7, 42)]$ |
$1$ |
| 261072.s1 |
261072s1 |
261072.s |
261072s |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{25} \cdot 3^{9} \cdot 7^{7} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6216$ |
$2$ |
$0$ |
$1.476312676$ |
$1$ |
|
$14$ |
$5750784$ |
$2.385239$ |
$6058428767/57286656$ |
$0.92119$ |
$4.15633$ |
$[0, 0, 0, 267981, -209126414]$ |
\(y^2=x^3+267981x-209126414\) |
6216.2.0.? |
$[(3689, 225792), (617, 13824)]$ |
$1$ |
| 261072.t1 |
261072t1 |
261072.t |
261072t |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{7} \cdot 7^{2} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.541395534$ |
$1$ |
|
$16$ |
$328704$ |
$0.884935$ |
$964894/4107$ |
$0.81392$ |
$2.70491$ |
$[0, 0, 0, 861, 24514]$ |
\(y^2=x^3+861x+24514\) |
24.2.0.b.1 |
$[(71, 666), (-3, 148)]$ |
$1$ |
| 261072.u1 |
261072u1 |
261072.u |
261072u |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{17} \cdot 7^{8} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$2.199212503$ |
$1$ |
|
$4$ |
$14902272$ |
$3.000858$ |
$-934029817/1940113944$ |
$1.10673$ |
$4.75586$ |
$[0, 0, 0, -525819, -8793628886]$ |
\(y^2=x^3-525819x-8793628886\) |
24.2.0.b.1 |
$[(2237, 34992)]$ |
$1$ |
| 261072.v1 |
261072v1 |
261072.v |
261072v |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{23} \cdot 7^{7} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6216$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12533760$ |
$2.906097$ |
$-217568172289106/33447302217$ |
$0.94639$ |
$4.74168$ |
$[0, 0, 0, -7017339, -8049401206]$ |
\(y^2=x^3-7017339x-8049401206\) |
6216.2.0.? |
$[ ]$ |
$1$ |
| 261072.w1 |
261072w1 |
261072.w |
261072w |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$518$ |
$2$ |
$0$ |
$1.343252506$ |
$1$ |
|
$4$ |
$645120$ |
$1.474907$ |
$-65536/37$ |
$0.74764$ |
$3.32099$ |
$[0, 0, 0, -16464, 1142876]$ |
\(y^2=x^3-16464x+1142876\) |
518.2.0.? |
$[(98, 686)]$ |
$1$ |
| 261072.x1 |
261072x1 |
261072.x |
261072x |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{7} \cdot 7^{7} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6216$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1327104$ |
$1.670984$ |
$-38272753/6216$ |
$0.80407$ |
$3.55120$ |
$[0, 0, 0, -49539, -4802686]$ |
\(y^2=x^3-49539x-4802686\) |
6216.2.0.? |
$[ ]$ |
$1$ |
| 261072.y1 |
261072y1 |
261072.y |
261072y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{12} \cdot 7^{7} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3108$ |
$16$ |
$0$ |
$2.090681314$ |
$1$ |
|
$2$ |
$1327104$ |
$1.693090$ |
$-199794688/188811$ |
$0.85250$ |
$3.51919$ |
$[0, 0, 0, -34104, -3933524]$ |
\(y^2=x^3-34104x-3933524\) |
3.4.0.a.1, 84.8.0.?, 444.8.0.?, 518.2.0.?, 1554.8.0.?, $\ldots$ |
$[(434, 7938)]$ |
$1$ |
| 261072.y2 |
261072y2 |
261072.y |
261072y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{9} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3108$ |
$16$ |
$0$ |
$0.696893771$ |
$1$ |
|
$4$ |
$3981312$ |
$2.242397$ |
$114667692032/156365811$ |
$0.93758$ |
$3.97532$ |
$[0, 0, 0, 283416, 67635484]$ |
\(y^2=x^3+283416x+67635484\) |
3.4.0.a.1, 84.8.0.?, 444.8.0.?, 518.2.0.?, 1554.8.0.?, $\ldots$ |
$[(3710, 228438)]$ |
$1$ |
| 261072.z1 |
261072z1 |
261072.z |
261072z |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{17} \cdot 3^{11} \cdot 7^{4} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.417008957$ |
$1$ |
|
$20$ |
$6220800$ |
$2.384758$ |
$-827587081151257/10645344$ |
$0.99059$ |
$4.57345$ |
$[0, 0, 0, -3771579, 2819277034]$ |
\(y^2=x^3-3771579x+2819277034\) |
24.2.0.b.1 |
$[(1421, 18144), (287, 41958)]$ |
$1$ |
| 261072.ba1 |
261072ba1 |
261072.ba |
261072ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6216$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2494464$ |
$1.898727$ |
$54/37$ |
$0.80280$ |
$3.69532$ |
$[0, 0, 0, 9261, 11798514]$ |
\(y^2=x^3+9261x+11798514\) |
6216.2.0.? |
$[ ]$ |
$1$ |
| 261072.bb1 |
261072bb1 |
261072.bb |
261072bb |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{31} \cdot 3^{3} \cdot 7^{4} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8930304$ |
$2.598885$ |
$-62604473927499/982600122368$ |
$1.04814$ |
$4.36973$ |
$[0, 0, 0, -531699, -791346766]$ |
\(y^2=x^3-531699x-791346766\) |
24.2.0.b.1 |
$[ ]$ |
$1$ |
| 261072.bc1 |
261072bc2 |
261072.bc |
261072bc |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{8} \cdot 3^{12} \cdot 7^{9} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3108$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$4128768$ |
$2.153423$ |
$3794826544/26973$ |
$0.85938$ |
$4.14566$ |
$[0, 0, 0, -636951, -194456990]$ |
\(y^2=x^3-636951x-194456990\) |
2.3.0.a.1, 84.6.0.?, 444.6.0.?, 1036.6.0.?, 3108.12.0.? |
$[ ]$ |
$1$ |
| 261072.bc2 |
261072bc1 |
261072.bc |
261072bc |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{4} \cdot 3^{9} \cdot 7^{9} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3108$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2064384$ |
$1.806850$ |
$67108864/36963$ |
$1.17570$ |
$3.59985$ |
$[0, 0, 0, -65856, 1428595]$ |
\(y^2=x^3-65856x+1428595\) |
2.3.0.a.1, 42.6.0.a.1, 444.6.0.?, 1036.6.0.?, 3108.12.0.? |
$[ ]$ |
$1$ |
| 261072.bd1 |
261072bd1 |
261072.bd |
261072bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{19} \cdot 3^{11} \cdot 7^{10} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13547520$ |
$2.792881$ |
$-26721587137/1150848$ |
$0.92282$ |
$4.68622$ |
$[0, 0, 0, -5884851, -5695589774]$ |
\(y^2=x^3-5884851x-5695589774\) |
888.2.0.? |
$[ ]$ |
$1$ |
| 261072.be1 |
261072be1 |
261072.be |
261072be |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$0.868369$ |
$18522/37$ |
$0.73583$ |
$2.67143$ |
$[0, 0, 0, 1029, -19894]$ |
\(y^2=x^3+1029x-19894\) |
888.2.0.? |
$[ ]$ |
$1$ |
| 261072.bf1 |
261072bf1 |
261072.bf |
261072bf |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$423360$ |
$1.218866$ |
$110592/37$ |
$0.76978$ |
$3.06261$ |
$[0, 0, 0, -7056, -148176]$ |
\(y^2=x^3-7056x-148176\) |
74.2.0.? |
$[ ]$ |
$1$ |
| 261072.bg1 |
261072bg1 |
261072.bg |
261072bg |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{17} \cdot 3^{9} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1900800$ |
$1.878214$ |
$-69426531/1184$ |
$0.88991$ |
$3.84569$ |
$[0, 0, 0, -181251, -30135294]$ |
\(y^2=x^3-181251x-30135294\) |
888.2.0.? |
$[ ]$ |
$1$ |
| 261072.bh1 |
261072bh1 |
261072.bh |
261072bh |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{4} \cdot 3^{3} \cdot 7^{8} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$222$ |
$2$ |
$0$ |
$1.718211243$ |
$1$ |
|
$4$ |
$774144$ |
$1.384708$ |
$48384/50653$ |
$1.20928$ |
$3.20084$ |
$[0, 0, 0, 1029, 540225]$ |
\(y^2=x^3+1029x+540225\) |
222.2.0.? |
$[(0, 735)]$ |
$1$ |
| 261072.bi1 |
261072bi1 |
261072.bi |
261072bi |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{37} \cdot 3^{7} \cdot 7^{2} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$3.353142715$ |
$1$ |
|
$2$ |
$9676800$ |
$2.684235$ |
$-11828855157217/5098897932288$ |
$1.04629$ |
$4.45116$ |
$[0, 0, 0, -250131, 1315011026]$ |
\(y^2=x^3-250131x+1315011026\) |
888.2.0.? |
$[(-929, 27306)]$ |
$1$ |
| 261072.bj1 |
261072bj1 |
261072.bj |
261072bj |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{4} \cdot 3^{13} \cdot 7^{8} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$222$ |
$2$ |
$0$ |
$6.705293109$ |
$1$ |
|
$2$ |
$2860032$ |
$2.157852$ |
$-5565496077568/80919$ |
$0.92509$ |
$4.35189$ |
$[0, 0, 0, -1501311, -708042895]$ |
\(y^2=x^3-1501311x-708042895\) |
222.2.0.? |
$[(16048, 2026863)]$ |
$1$ |
| 261072.bk1 |
261072bk1 |
261072.bk |
261072bk |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7^{8} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$0.269884311$ |
$1$ |
|
$8$ |
$1419264$ |
$1.744310$ |
$964894/999$ |
$0.78163$ |
$3.49274$ |
$[0, 0, 0, 42189, 2962834]$ |
\(y^2=x^3+42189x+2962834\) |
888.2.0.? |
$[(245, 5292)]$ |
$1$ |