Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
257754.a1 |
257754a1 |
257754.a |
257754a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{22} \cdot 3^{3} \cdot 7^{2} \cdot 17^{2} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$77045760$ |
$3.318901$ |
$42720468528431539/1603679551488$ |
$0.95924$ |
$5.20021$ |
$[1, 1, 0, -49953382, -131431930220]$ |
\(y^2+xy=x^3+x^2-49953382x-131431930220\) |
2.3.0.a.1, 24.6.0.j.1, 114.6.0.?, 152.6.0.?, 456.12.0.? |
$[ ]$ |
257754.a2 |
257754a2 |
257754.a |
257754a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{11} \cdot 3^{6} \cdot 7^{4} \cdot 17^{4} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$154091520$ |
$3.665474$ |
$2859720454700621/299395539781632$ |
$1.08097$ |
$5.39994$ |
$[1, 1, 0, 20282778, -471585653100]$ |
\(y^2+xy=x^3+x^2+20282778x-471585653100\) |
2.3.0.a.1, 24.6.0.j.1, 152.6.0.?, 228.6.0.?, 456.12.0.? |
$[ ]$ |
257754.b1 |
257754b1 |
257754.b |
257754b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 3^{8} \cdot 7^{2} \cdot 17 \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$136$ |
$2$ |
$0$ |
$1.629204277$ |
$1$ |
|
$8$ |
$207360$ |
$0.524429$ |
$3283365167/10930626$ |
$0.85814$ |
$2.35636$ |
$[1, 1, 0, 221, 2839]$ |
\(y^2+xy=x^3+x^2+221x+2839\) |
136.2.0.? |
$[(-5, 43), (157, 1906)]$ |
257754.c1 |
257754c3 |
257754.c |
257754c |
$3$ |
$9$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 3 \cdot 7^{3} \cdot 17^{9} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.5 |
3B |
$162792$ |
$144$ |
$3$ |
$5.286194386$ |
$1$ |
|
$2$ |
$69284160$ |
$3.316330$ |
$-6150311179917589675873/244053849830826$ |
$1.03702$ |
$5.44453$ |
$[1, 1, 0, -137794429, 622544561359]$ |
\(y^2+xy=x^3+x^2-137794429x+622544561359\) |
3.4.0.a.1, 9.36.0.d.2, 57.8.0-3.a.1.2, 171.72.0.?, 2856.8.0.?, $\ldots$ |
$[(-5227, 1098068)]$ |
257754.c2 |
257754c2 |
257754.c |
257754c |
$3$ |
$9$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{9} \cdot 17^{3} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.1 |
3Cs |
$162792$ |
$144$ |
$3$ |
$1.762064795$ |
$1$ |
|
$2$ |
$23094720$ |
$2.767025$ |
$-101566487155393/42823570577256$ |
$1.05717$ |
$4.53547$ |
$[1, 1, 0, -350899, 2160870901]$ |
\(y^2+xy=x^3+x^2-350899x+2160870901\) |
3.12.0.a.1, 9.36.0.a.1, 57.24.0-3.a.1.1, 171.72.0.?, 2856.24.1.?, $\ldots$ |
$[(-1237, 27152)]$ |
257754.c3 |
257754c1 |
257754.c |
257754c |
$3$ |
$9$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{3} \cdot 17 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.4 |
3B |
$162792$ |
$144$ |
$3$ |
$5.286194386$ |
$1$ |
|
$0$ |
$7698240$ |
$2.217716$ |
$139233463487/58763045376$ |
$1.03208$ |
$4.00624$ |
$[1, 1, 0, 38981, -79925411]$ |
\(y^2+xy=x^3+x^2+38981x-79925411\) |
3.4.0.a.1, 9.36.0.d.1, 57.8.0-3.a.1.1, 171.72.0.?, 2856.8.0.?, $\ldots$ |
$[(8765/4, 642017/4)]$ |
257754.d1 |
257754d1 |
257754.d |
257754d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{5} \cdot 3^{12} \cdot 7^{3} \cdot 17 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$18088$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$26956800$ |
$3.058941$ |
$-664779294907165541377/1884090142368$ |
$0.96919$ |
$5.26596$ |
$[1, 1, 0, -65638471, -204712749419]$ |
\(y^2+xy=x^3+x^2-65638471x-204712749419\) |
18088.2.0.? |
$[ ]$ |
257754.e1 |
257754e1 |
257754.e |
257754e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3 \cdot 7^{3} \cdot 17 \cdot 19^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$1.027701815$ |
$1$ |
|
$10$ |
$4727808$ |
$2.067455$ |
$-4499807642857/279888$ |
$0.88791$ |
$4.22887$ |
$[1, 1, 0, -884096, 319610256]$ |
\(y^2+xy=x^3+x^2-884096x+319610256\) |
1428.2.0.? |
$[(4960/3, 2668/3), (-572, 25556)]$ |
257754.f1 |
257754f1 |
257754.f |
257754f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{17} \cdot 3^{10} \cdot 7 \cdot 17^{2} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$33488640$ |
$3.173683$ |
$-293680278649/15657353478144$ |
$1.04365$ |
$4.92724$ |
$[1, 1, 0, -355953, -24810565419]$ |
\(y^2+xy=x^3+x^2-355953x-24810565419\) |
56.2.0.b.1 |
$[ ]$ |
257754.g1 |
257754g1 |
257754.g |
257754g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{19} \cdot 3^{2} \cdot 7^{3} \cdot 17^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$8.542841520$ |
$1$ |
|
$2$ |
$84837888$ |
$3.731277$ |
$-22350267487260250143769/467739869184$ |
$1.00084$ |
$6.02071$ |
$[1, 1, 0, -1508444283, 22549137076701]$ |
\(y^2+xy=x^3+x^2-1508444283x+22549137076701\) |
56.2.0.b.1 |
$[(51303, 8929464)]$ |
257754.h1 |
257754h1 |
257754.h |
257754h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$3.925914865$ |
$1$ |
|
$2$ |
$1488384$ |
$1.527647$ |
$62851031/36414$ |
$0.89278$ |
$3.33167$ |
$[1, 1, 0, 21292, 49446]$ |
\(y^2+xy=x^3+x^2+21292x+49446\) |
56.2.0.b.1 |
$[(275, 5039)]$ |
257754.i1 |
257754i1 |
257754.i |
257754i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{7} \cdot 3^{2} \cdot 7^{5} \cdot 17 \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$952$ |
$2$ |
$0$ |
$40.46814053$ |
$1$ |
|
$4$ |
$1451520$ |
$1.640955$ |
$-12756247537586784625/329148288$ |
$0.97341$ |
$4.00340$ |
$[1, 1, 0, -346605, -78686307]$ |
\(y^2+xy=x^3+x^2-346605x-78686307\) |
952.2.0.? |
$[(687, 2490), (873, 16446)]$ |
257754.j1 |
257754j1 |
257754.j |
257754j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 17^{2} \cdot 19^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$1.698130357$ |
$1$ |
|
$13$ |
$460800$ |
$1.059753$ |
$75982583888875/2718912$ |
$0.92167$ |
$3.27413$ |
$[1, 1, 0, -16765, 828541]$ |
\(y^2+xy=x^3+x^2-16765x+828541\) |
2.3.0.a.1, 24.6.0.j.1, 114.6.0.?, 152.6.0.?, 456.12.0.? |
$[(75, -29), (245, 3269)]$ |
257754.j2 |
257754j2 |
257754.j |
257754j |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 7^{4} \cdot 17^{4} \cdot 19^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$456$ |
$12$ |
$0$ |
$1.698130357$ |
$1$ |
|
$14$ |
$921600$ |
$1.406328$ |
$-66110789312875/14438442312$ |
$0.92572$ |
$3.28866$ |
$[1, 1, 0, -16005, 908037]$ |
\(y^2+xy=x^3+x^2-16005x+908037\) |
2.3.0.a.1, 24.6.0.j.1, 152.6.0.?, 228.6.0.?, 456.12.0.? |
$[(93, 438), (-43, 1254)]$ |
257754.k1 |
257754k1 |
257754.k |
257754k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{4} \cdot 7^{2} \cdot 17 \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2584$ |
$12$ |
$0$ |
$3.502361659$ |
$1$ |
|
$3$ |
$5529600$ |
$2.195740$ |
$192549837768625/24942339072$ |
$0.96080$ |
$4.05770$ |
$[1, 1, 0, -434290, -97230668]$ |
\(y^2+xy=x^3+x^2-434290x-97230668\) |
2.3.0.a.1, 34.6.0.a.1, 152.6.0.?, 2584.12.0.? |
$[(-396, 3782)]$ |
257754.k2 |
257754k2 |
257754.k |
257754k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{5} \cdot 3^{8} \cdot 7^{4} \cdot 17^{2} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2584$ |
$12$ |
$0$ |
$7.004723319$ |
$1$ |
|
$0$ |
$11059200$ |
$2.542313$ |
$685545690359375/2767984283232$ |
$1.04038$ |
$4.30312$ |
$[1, 1, 0, 663150, -507892716]$ |
\(y^2+xy=x^3+x^2+663150x-507892716\) |
2.3.0.a.1, 68.6.0.c.1, 152.6.0.?, 2584.12.0.? |
$[(5275/2, 407501/2)]$ |
257754.l1 |
257754l1 |
257754.l |
257754l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{10} \cdot 3^{7} \cdot 7^{8} \cdot 17^{2} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$456$ |
$12$ |
$0$ |
$3.798503731$ |
$1$ |
|
$3$ |
$45158400$ |
$3.460136$ |
$1252553990449987212625/70889922816427008$ |
$0.97263$ |
$5.31680$ |
$[1, 1, 0, -81070860, 266834577744]$ |
\(y^2+xy=x^3+x^2-81070860x+266834577744\) |
2.3.0.a.1, 8.6.0.d.1, 114.6.0.?, 456.12.0.? |
$[(7303, 249997)]$ |
257754.l2 |
257754l2 |
257754.l |
257754l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{5} \cdot 3^{14} \cdot 7^{4} \cdot 17^{4} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$456$ |
$12$ |
$0$ |
$7.597007462$ |
$1$ |
|
$0$ |
$90316800$ |
$3.806713$ |
$449485901393767859375/11080072238736418848$ |
$1.03862$ |
$5.53376$ |
$[1, 1, 0, 57610900, 1085528479728]$ |
\(y^2+xy=x^3+x^2+57610900x+1085528479728\) |
2.3.0.a.1, 8.6.0.a.1, 228.6.0.?, 456.12.0.? |
$[(-15137/3, 26804191/3)]$ |
257754.m1 |
257754m2 |
257754.m |
257754m |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 3^{2} \cdot 7^{3} \cdot 17^{3} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$54264$ |
$16$ |
$0$ |
$1.496193574$ |
$1$ |
|
$0$ |
$50388480$ |
$3.433231$ |
$-561469581977282220768625/208053100458$ |
$0.99272$ |
$5.80681$ |
$[1, 1, 0, -620451790, 5948278612342]$ |
\(y^2+xy=x^3+x^2-620451790x+5948278612342\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 2856.8.0.?, 18088.2.0.?, 54264.16.0.? |
$[(359449/5, -970642/5)]$ |
257754.m2 |
257754m1 |
257754.m |
257754m |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 7^{9} \cdot 17 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$54264$ |
$16$ |
$0$ |
$0.498731191$ |
$1$ |
|
$4$ |
$16796160$ |
$2.883926$ |
$-1002837679918908625/76015542235752$ |
$0.94230$ |
$4.75443$ |
$[1, 1, 0, -7527940, 8451412504]$ |
\(y^2+xy=x^3+x^2-7527940x+8451412504\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 2856.8.0.?, 18088.2.0.?, 54264.16.0.? |
$[(1195, 33517)]$ |
257754.n1 |
257754n1 |
257754.n |
257754n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 3^{14} \cdot 7^{5} \cdot 17 \cdot 19^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$952$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$6894720$ |
$2.255356$ |
$-1366740737778013273/2733170239422$ |
$1.05972$ |
$4.29705$ |
$[1, 1, 0, -1172174, -489800118]$ |
\(y^2+xy=x^3+x^2-1172174x-489800118\) |
952.2.0.? |
$[ ]$ |
257754.o1 |
257754o2 |
257754.o |
257754o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2 \cdot 3^{10} \cdot 7^{2} \cdot 17 \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$54264$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8147200$ |
$2.448532$ |
$343441189027/98375634$ |
$0.89025$ |
$4.25869$ |
$[1, 1, 0, -1000699, -274235105]$ |
\(y^2+xy=x^3+x^2-1000699x-274235105\) |
2.3.0.a.1, 1596.6.0.?, 2584.6.0.?, 2856.6.0.?, 54264.12.0.? |
$[ ]$ |
257754.o2 |
257754o1 |
257754.o |
257754o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{5} \cdot 7 \cdot 17^{2} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$54264$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4073600$ |
$2.101959$ |
$1548816893/1966356$ |
$0.85177$ |
$3.83939$ |
$[1, 1, 0, 165331, -28202775]$ |
\(y^2+xy=x^3+x^2+165331x-28202775\) |
2.3.0.a.1, 798.6.0.?, 2584.6.0.?, 2856.6.0.?, 54264.12.0.? |
$[ ]$ |
257754.p1 |
257754p1 |
257754.p |
257754p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{13} \cdot 3^{2} \cdot 7^{2} \cdot 17 \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$136$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3983616$ |
$2.146301$ |
$-28671066937/61415424$ |
$0.87245$ |
$3.94731$ |
$[1, 1, 0, -163901, -55446723]$ |
\(y^2+xy=x^3+x^2-163901x-55446723\) |
136.2.0.? |
$[ ]$ |
257754.q1 |
257754q2 |
257754.q |
257754q |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{2} \cdot 7^{9} \cdot 17^{6} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3192$ |
$16$ |
$0$ |
$1.152504173$ |
$1$ |
|
$4$ |
$17635968$ |
$2.796745$ |
$-26885619637842619882657/4488366981249252864$ |
$1.00388$ |
$4.63799$ |
$[1, 1, 0, -4443936, 4091116032]$ |
\(y^2+xy=x^3+x^2-4443936x+4091116032\) |
3.4.0.a.1, 56.2.0.b.1, 57.8.0-3.a.1.2, 168.8.0.?, 3192.16.0.? |
$[(1923, 50625)]$ |
257754.q2 |
257754q1 |
257754.q |
257754q |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{27} \cdot 3^{6} \cdot 7^{3} \cdot 17^{2} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3192$ |
$16$ |
$0$ |
$3.457512519$ |
$1$ |
|
$0$ |
$5878656$ |
$2.247440$ |
$15697286016456868703/9699053927399424$ |
$1.00556$ |
$4.02005$ |
$[1, 1, 0, 371424, -22514688]$ |
\(y^2+xy=x^3+x^2+371424x-22514688\) |
3.4.0.a.1, 56.2.0.b.1, 57.8.0-3.a.1.1, 168.8.0.?, 3192.16.0.? |
$[(267/2, 12585/2)]$ |
257754.r1 |
257754r2 |
257754.r |
257754r |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 7^{18} \cdot 17^{3} \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7752$ |
$16$ |
$0$ |
$28.54784668$ |
$1$ |
|
$0$ |
$15397879680$ |
$6.157883$ |
$-15431857370630972204702226136417/3779323070318626304351304$ |
$1.06553$ |
$8.12687$ |
$[1, 1, 0, -9493146128126, 11260432875231620892]$ |
\(y^2+xy=x^3+x^2-9493146128126x+11260432875231620892\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 136.2.0.?, 408.8.0.?, 7752.16.0.? |
$[(276291625115447/7087, 3986689026245534389145/7087)]$ |
257754.r2 |
257754r1 |
257754.r |
257754r |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{30} \cdot 7^{6} \cdot 17 \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7752$ |
$16$ |
$0$ |
$85.64354004$ |
$1$ |
|
$0$ |
$5132626560$ |
$5.608582$ |
$2129503377881546170534943/210835998001488447189504$ |
$1.12418$ |
$7.27130$ |
$[1, 1, 0, 49056535834, 54541328363400852]$ |
\(y^2+xy=x^3+x^2+49056535834x+54541328363400852\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 136.2.0.?, 408.8.0.?, 7752.16.0.? |
$[(185293631532788018122550474989301693025083/587794359815673614, 98415685920149053679668774213335017647811493780040997217315223/587794359815673614)]$ |
257754.s1 |
257754s1 |
257754.s |
257754s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{7} \cdot 7 \cdot 17 \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$0.769088861$ |
$1$ |
|
$16$ |
$258048$ |
$0.449891$ |
$6544969919/4164048$ |
$0.86581$ |
$2.28663$ |
$[1, 0, 1, 277, -538]$ |
\(y^2+xy+y=x^3+277x-538\) |
1428.2.0.? |
$[(3, 16), (12, 61)]$ |
257754.t1 |
257754t1 |
257754.t |
257754t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{5} \cdot 3^{22} \cdot 7^{11} \cdot 17^{2} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2118758400$ |
$5.202515$ |
$-23439374927166990900760633/573844026377336511607776$ |
$1.05222$ |
$6.88137$ |
$[1, 0, 1, -15325584270, 4805543586792352]$ |
\(y^2+xy+y=x^3-15325584270x+4805543586792352\) |
56.2.0.b.1 |
$[ ]$ |
257754.u1 |
257754u1 |
257754.u |
257754u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 7^{5} \cdot 17^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$0.749855939$ |
$1$ |
|
$4$ |
$17729280$ |
$2.773094$ |
$-1952934620143033/28327324536$ |
$0.92996$ |
$4.71826$ |
$[1, 0, 1, -6693670, 6748142480]$ |
\(y^2+xy+y=x^3-6693670x+6748142480\) |
56.2.0.b.1 |
$[(1474, 8468)]$ |
257754.v1 |
257754v1 |
257754.v |
257754v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{7} \cdot 3^{2} \cdot 7 \cdot 17 \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$952$ |
$2$ |
$0$ |
$11.42438105$ |
$1$ |
|
$0$ |
$1378944$ |
$1.628399$ |
$2828663/137088$ |
$0.83400$ |
$3.43719$ |
$[1, 0, 1, 7573, -2306986]$ |
\(y^2+xy+y=x^3+7573x-2306986\) |
952.2.0.? |
$[(56306/19, 10679319/19)]$ |
257754.w1 |
257754w4 |
257754.w |
257754w |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{3} \cdot 3^{8} \cdot 7 \cdot 17 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$18088$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$5529600$ |
$2.118771$ |
$14489843500598257/6246072$ |
$0.99019$ |
$4.40449$ |
$[1, 0, 1, -1833527, -955758526]$ |
\(y^2+xy+y=x^3-1833527x-955758526\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 152.24.0.?, 952.24.0.?, $\ldots$ |
$[ ]$ |
257754.w2 |
257754w3 |
257754.w |
257754w |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{3} \cdot 3^{2} \cdot 7^{4} \cdot 17^{4} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$18088$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5529600$ |
$2.118771$ |
$34623662831857/14438442312$ |
$0.97689$ |
$3.91999$ |
$[1, 0, 1, -245127, 24671266]$ |
\(y^2+xy+y=x^3-245127x+24671266\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 76.12.0.?, 152.24.0.?, $\ldots$ |
$[ ]$ |
257754.w3 |
257754w2 |
257754.w |
257754w |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 7^{2} \cdot 17^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$18088$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2764800$ |
$1.772196$ |
$3590714269297/73410624$ |
$0.94339$ |
$3.73811$ |
$[1, 0, 1, -115167, -14784590]$ |
\(y^2+xy+y=x^3-115167x-14784590\) |
2.6.0.a.1, 8.12.0.a.1, 76.12.0.?, 152.24.0.?, 476.12.0.?, $\ldots$ |
$[ ]$ |
257754.w4 |
257754w1 |
257754.w |
257754w |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{2} \cdot 7 \cdot 17 \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$18088$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1382400$ |
$1.425623$ |
$103823/4386816$ |
$1.04374$ |
$3.24368$ |
$[1, 0, 1, 353, -691150]$ |
\(y^2+xy+y=x^3+353x-691150\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 76.12.0.?, 152.24.0.?, $\ldots$ |
$[ ]$ |
257754.x1 |
257754x2 |
257754.x |
257754x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{4} \cdot 17^{4} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$63037440$ |
$3.550579$ |
$15003922005783796483/584756913636$ |
$0.98475$ |
$5.67064$ |
$[1, 0, 1, -352442142, -2546655765740]$ |
\(y^2+xy+y=x^3-352442142x-2546655765740\) |
2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 228.12.0.? |
$[ ]$ |
257754.x2 |
257754x1 |
257754.x |
257754x |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{8} \cdot 17^{2} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$31518720$ |
$3.204006$ |
$4209701759834563/719723875248$ |
$0.95054$ |
$5.01423$ |
$[1, 0, 1, -23072962, -35808632764]$ |
\(y^2+xy+y=x^3-23072962x-35808632764\) |
2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 114.6.0.?, 228.12.0.? |
$[ ]$ |
257754.y1 |
257754y1 |
257754.y |
257754y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{15} \cdot 7^{5} \cdot 17 \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$0.247718500$ |
$1$ |
|
$24$ |
$5529600$ |
$2.143627$ |
$-28154299464100934497/1049537371938048$ |
$0.97737$ |
$4.07195$ |
$[1, 0, 1, -451277, 120346184]$ |
\(y^2+xy+y=x^3-451277x+120346184\) |
1428.2.0.? |
$[(402, 1783), (4371, 283582)]$ |
257754.z1 |
257754z1 |
257754.z |
257754z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 7 \cdot 17 \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$18088$ |
$2$ |
$0$ |
$1.474169679$ |
$1$ |
|
$4$ |
$2903040$ |
$2.011612$ |
$-161282338400737/528911208$ |
$0.88961$ |
$4.04393$ |
$[1, 0, 1, -409382, 101069696]$ |
\(y^2+xy+y=x^3-409382x+101069696\) |
18088.2.0.? |
$[(372, 355)]$ |
257754.ba1 |
257754ba3 |
257754.ba |
257754ba |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2 \cdot 3^{3} \cdot 7 \cdot 17^{8} \cdot 19^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$24.86332941$ |
$1$ |
|
$4$ |
$28753920$ |
$2.933651$ |
$7101281816103496897/50099889941262$ |
$0.95020$ |
$4.90165$ |
$[1, 0, 1, -14455892, 21024564716]$ |
\(y^2+xy+y=x^3-14455892x+21024564716\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0.bb.1, 152.12.0.?, $\ldots$ |
$[(3146, 80193), (6756, 478015)]$ |
257754.ba2 |
257754ba2 |
257754.ba |
257754ba |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 7^{2} \cdot 17^{4} \cdot 19^{8} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$3192$ |
$48$ |
$0$ |
$6.215832353$ |
$1$ |
|
$20$ |
$14376960$ |
$2.587078$ |
$7813429445648737/4308107057604$ |
$0.95089$ |
$4.35492$ |
$[1, 0, 1, -1492382, -152625220]$ |
\(y^2+xy+y=x^3-1492382x-152625220\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 56.12.0.a.1, 76.12.0.?, 168.24.0.?, $\ldots$ |
$[(-681, 23749), (1920, 62764)]$ |
257754.ba3 |
257754ba1 |
257754.ba |
257754ba |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{4} \cdot 3^{3} \cdot 7^{4} \cdot 17^{2} \cdot 19^{7} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$1.553958088$ |
$1$ |
|
$17$ |
$7188480$ |
$2.240505$ |
$3469903405095457/5695440912$ |
$1.07183$ |
$4.28977$ |
$[1, 0, 1, -1138602, -467064884]$ |
\(y^2+xy+y=x^3-1138602x-467064884\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0.bb.1, 76.12.0.?, $\ldots$ |
$[(4153, 255677), (-607, 1017)]$ |
257754.ba4 |
257754ba4 |
257754.ba |
257754ba |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2 \cdot 3^{12} \cdot 7 \cdot 17^{2} \cdot 19^{10} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3192$ |
$48$ |
$0$ |
$6.215832353$ |
$1$ |
|
$10$ |
$28753920$ |
$2.933651$ |
$461185788415532543/280217554681806$ |
$0.97162$ |
$4.68221$ |
$[1, 0, 1, 5810648, -1204261540]$ |
\(y^2+xy+y=x^3+5810648x-1204261540\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 56.12.0.v.1, 76.12.0.?, $\ldots$ |
$[(220, 9095), (19291/2, 2963287/2)]$ |
257754.bb1 |
257754bb5 |
257754.bb |
257754bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{3} \cdot 3^{8} \cdot 7^{2} \cdot 17^{8} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.217 |
2B |
$5168$ |
$192$ |
$1$ |
$1.692026612$ |
$1$ |
|
$6$ |
$212336640$ |
$4.051346$ |
$285531136548675601769470657/17941034271597192$ |
$1.06247$ |
$6.30695$ |
$[1, 0, 1, -4952416052, 134144366143754]$ |
\(y^2+xy+y=x^3-4952416052x+134144366143754\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 76.12.0.?, 152.96.0.?, $\ldots$ |
$[(40728, 13750)]$ |
257754.bb2 |
257754bb3 |
257754.bb |
257754bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{6} \cdot 3^{16} \cdot 7^{4} \cdot 17^{4} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.96 |
2Cs |
$2584$ |
$192$ |
$1$ |
$0.846013306$ |
$1$ |
|
$14$ |
$106168320$ |
$3.704777$ |
$70108386184777836280897/552468975892674624$ |
$1.07814$ |
$5.63983$ |
$[1, 0, 1, -310114892, 2087610425930]$ |
\(y^2+xy+y=x^3-310114892x+2087610425930\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 76.24.0.?, 136.96.1.?, $\ldots$ |
$[(8409, 268711)]$ |
257754.bb3 |
257754bb6 |
257754.bb |
257754bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{32} \cdot 7^{2} \cdot 17^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.204 |
2B |
$5168$ |
$192$ |
$1$ |
$1.692026612$ |
$1$ |
|
$4$ |
$212336640$ |
$4.051346$ |
$-2770540998624539614657/209924951154647363208$ |
$1.08173$ |
$5.77236$ |
$[1, 0, 1, -105630052, 4799570167946]$ |
\(y^2+xy+y=x^3-105630052x+4799570167946\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 76.12.0.?, $\ldots$ |
$[(-4184, 2275478)]$ |
257754.bb4 |
257754bb2 |
257754.bb |
257754bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 7^{8} \cdot 17^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.97 |
2Cs |
$2584$ |
$192$ |
$1$ |
$1.692026612$ |
$1$ |
|
$10$ |
$53084160$ |
$3.358200$ |
$82582985847542515777/44772582831427584$ |
$1.09721$ |
$5.09857$ |
$[1, 0, 1, -32751372, -18133417910]$ |
\(y^2+xy+y=x^3-32751372x-18133417910\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 68.24.0.c.1, 76.24.0.?, $\ldots$ |
$[(-2287, 212823)]$ |
257754.bb5 |
257754bb1 |
257754.bb |
257754bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( 2^{24} \cdot 3^{4} \cdot 7^{4} \cdot 17 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.102 |
2B |
$5168$ |
$192$ |
$1$ |
$3.384053225$ |
$1$ |
|
$3$ |
$26542080$ |
$3.011627$ |
$38331145780597164097/55468445663232$ |
$1.02142$ |
$5.03697$ |
$[1, 0, 1, -25358092, -49090559926]$ |
\(y^2+xy+y=x^3-25358092x-49090559926\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.z.1, 34.6.0.a.1, $\ldots$ |
$[(6034, 129650)]$ |
257754.bb6 |
257754bb4 |
257754.bb |
257754bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{4} \cdot 7^{16} \cdot 17 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.120 |
2B |
$5168$ |
$192$ |
$1$ |
$3.384053225$ |
$1$ |
|
$2$ |
$106168320$ |
$3.704777$ |
$4738217997934888496063/2928751705237796928$ |
$1.06742$ |
$5.42359$ |
$[1, 0, 1, 126319668, -142590599606]$ |
\(y^2+xy+y=x^3+126319668x-142590599606\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.z.2, 68.12.0.h.1, $\ldots$ |
$[(16124, 2458965)]$ |