Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
25688.a1 |
25688e1 |
25688.a |
25688e |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{3} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.321679109$ |
$1$ |
|
$14$ |
$9792$ |
$0.019347$ |
$-12967168/19$ |
$0.97605$ |
$2.64413$ |
$[0, 1, 0, -160, 729]$ |
\(y^2=x^3+x^2-160x+729\) |
494.2.0.? |
$[(4, 13), (8, 5)]$ |
25688.b1 |
25688k2 |
25688.b |
25688k |
$2$ |
$2$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( 2^{11} \cdot 13^{9} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$147264$ |
$1.776217$ |
$2590058/361$ |
$0.87964$ |
$4.47876$ |
$[0, 1, 0, -79824, -7589984]$ |
\(y^2=x^3+x^2-79824x-7589984\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 988.6.0.?, 1976.12.0.? |
$[ ]$ |
25688.b2 |
25688k1 |
25688.b |
25688k |
$2$ |
$2$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{9} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$73632$ |
$1.429644$ |
$5324/19$ |
$0.70224$ |
$3.96288$ |
$[0, 1, 0, 8056, -629888]$ |
\(y^2=x^3+x^2+8056x-629888\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 494.6.0.?, 1976.12.0.? |
$[ ]$ |
25688.c1 |
25688i1 |
25688.c |
25688i |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.212152314$ |
$1$ |
|
$2$ |
$17280$ |
$0.670996$ |
$-1024/19$ |
$0.79665$ |
$3.08897$ |
$[0, 1, 0, -225, 7411]$ |
\(y^2=x^3+x^2-225x+7411\) |
38.2.0.a.1 |
$[(30, 169)]$ |
25688.d1 |
25688d2 |
25688.d |
25688d |
$2$ |
$2$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( 2^{11} \cdot 13^{3} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$11328$ |
$0.493742$ |
$2590058/361$ |
$0.87964$ |
$2.96310$ |
$[0, 1, 0, -472, -3600]$ |
\(y^2=x^3+x^2-472x-3600\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 988.6.0.?, 1976.12.0.? |
$[ ]$ |
25688.d2 |
25688d1 |
25688.d |
25688d |
$2$ |
$2$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{3} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1976$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5664$ |
$0.147169$ |
$5324/19$ |
$0.70224$ |
$2.44722$ |
$[0, 1, 0, 48, -272]$ |
\(y^2=x^3+x^2+48x-272\) |
2.3.0.a.1, 104.6.0.?, 152.6.0.?, 494.6.0.?, 1976.12.0.? |
$[ ]$ |
25688.e1 |
25688l1 |
25688.e |
25688l |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$127296$ |
$1.301823$ |
$-12967168/19$ |
$0.97605$ |
$4.15979$ |
$[0, 1, 0, -27096, 1709917]$ |
\(y^2=x^3+x^2-27096x+1709917\) |
494.2.0.? |
$[ ]$ |
25688.f1 |
25688h1 |
25688.f |
25688h |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.552880242$ |
$1$ |
|
$2$ |
$13440$ |
$0.652559$ |
$6912/247$ |
$0.75459$ |
$3.06389$ |
$[0, 0, 0, 169, 6591]$ |
\(y^2=x^3+169x+6591\) |
494.2.0.? |
$[(26, 169)]$ |
25688.g1 |
25688a1 |
25688.g |
25688a |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{4} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$0.972784304$ |
$1$ |
|
$4$ |
$36096$ |
$1.255066$ |
$-22359484836/130321$ |
$1.09431$ |
$4.04104$ |
$[0, 0, 0, -18083, 940654]$ |
\(y^2=x^3-18083x+940654\) |
4.16.0-4.b.1.1 |
$[(159, 1444)]$ |
25688.h1 |
25688g1 |
25688.h |
25688g |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{10} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$52$ |
$16$ |
$0$ |
$3.575905629$ |
$1$ |
|
$2$ |
$469248$ |
$2.537540$ |
$-22359484836/130321$ |
$1.09431$ |
$5.55670$ |
$[0, 0, 0, -3056027, 2066616838]$ |
\(y^2=x^3-3056027x+2066616838\) |
4.8.0.b.1, 52.16.0-4.b.1.1 |
$[(699, 16492)]$ |
25688.i1 |
25688c1 |
25688.i |
25688c |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{11} \cdot 13^{9} \cdot 19^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$12.25436863$ |
$1$ |
|
$2$ |
$104832$ |
$1.735737$ |
$-101306/361$ |
$0.79856$ |
$4.35338$ |
$[0, 1, 0, -27096, -4602064]$ |
\(y^2=x^3+x^2-27096x-4602064\) |
104.2.0.? |
$[(1915, 83486), (877/2, 1691/2)]$ |
25688.j1 |
25688f1 |
25688.j |
25688f |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{11} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18720$ |
$0.865296$ |
$-31250/19$ |
$0.89957$ |
$3.35661$ |
$[0, 1, 0, -1408, -29600]$ |
\(y^2=x^3+x^2-1408x-29600\) |
152.2.0.? |
$[ ]$ |
25688.k1 |
25688j1 |
25688.k |
25688j |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{11} \cdot 13^{3} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$0.453261$ |
$-101306/361$ |
$0.79856$ |
$2.83772$ |
$[0, 1, 0, -160, -2144]$ |
\(y^2=x^3+x^2-160x-2144\) |
104.2.0.? |
$[ ]$ |
25688.l1 |
25688b1 |
25688.l |
25688b |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.773311036$ |
$1$ |
|
$0$ |
$13440$ |
$0.727022$ |
$-4000000/247$ |
$0.76949$ |
$3.29586$ |
$[0, -1, 0, -1408, -20931]$ |
\(y^2=x^3-x^2-1408x-20931\) |
494.2.0.? |
$[(309/2, 4563/2)]$ |