Learn more

Refine search


Results (49 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
255162.a1 255162.a \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $2$ $\mathsf{trivial}$ $2.196306567$ $[1, 1, 0, 91, -1011]$ \(y^2+xy=x^3+x^2+91x-1011\) 276.2.0.? $[(10, 27), (7, 2)]$
255162.b1 255162.b \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.320234363$ $[1, 1, 0, 11056, 1952436]$ \(y^2+xy=x^3+x^2+11056x+1952436\) 516.2.0.? $[(82, 1808)]$
255162.c1 255162.c \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2416681, 1403570245]$ \(y^2+xy=x^3+x^2-2416681x+1403570245\) 2.3.0.a.1, 24.6.0.j.1, 258.6.0.?, 344.6.0.?, 1032.12.0.? $[ ]$
255162.c2 255162.c \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 763599, 4835092365]$ \(y^2+xy=x^3+x^2+763599x+4835092365\) 2.3.0.a.1, 24.6.0.j.1, 344.6.0.?, 516.6.0.?, 1032.12.0.? $[ ]$
255162.d1 255162.d \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -610327203, -5806589776371]$ \(y^2+xy=x^3+x^2-610327203x-5806589776371\) 276.2.0.? $[ ]$
255162.e1 255162.e \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $7.252645554$ $[1, 1, 0, -110978, -33359766]$ \(y^2+xy=x^3+x^2-110978x-33359766\) 184.2.0.? $[(947639/26, 878406859/26)]$
255162.f1 255162.f \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1383090, -4260204]$ \(y^2+xy=x^3+x^2-1383090x-4260204\) 552.2.0.? $[ ]$
255162.g1 255162.g \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -425, -5139]$ \(y^2+xy=x^3+x^2-425x-5139\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 129.8.0.?, 1032.16.0.? $[ ]$
255162.g2 255162.g \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 3445, 74583]$ \(y^2+xy=x^3+x^2+3445x+74583\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 129.8.0.?, 1032.16.0.? $[ ]$
255162.h1 255162.h \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -339, -49257]$ \(y^2+xy=x^3+x^2-339x-49257\) 8.2.0.a.1 $[ ]$
255162.i1 255162.i \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -52903626, -948394286892]$ \(y^2+xy=x^3+x^2-52903626x-948394286892\) 276.2.0.? $[ ]$
255162.j1 255162.j \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.315534758$ $[1, 0, 1, -6377885, -6201015880]$ \(y^2+xy+y=x^3-6377885x-6201015880\) 516.2.0.? $[(26251/3, 57946/3)]$
255162.k1 255162.k \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.731230368$ $[1, 0, 1, -7435, -11994490]$ \(y^2+xy+y=x^3-7435x-11994490\) 516.2.0.? $[(799, 21788)]$
255162.l1 255162.l \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -6882017, 5041599860]$ \(y^2+xy+y=x^3-6882017x+5041599860\) 2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? $[ ]$
255162.l2 255162.l \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 1105663, 514182836]$ \(y^2+xy+y=x^3+1105663x+514182836\) 2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? $[ ]$
255162.m1 255162.m \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.806861790$ $[1, 0, 1, -660132, 37924152994]$ \(y^2+xy+y=x^3-660132x+37924152994\) 7912.2.0.? $[(10388, 1068150)]$
255162.n1 255162.n \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $8.053423893$ $[1, 0, 1, -456742, -118829710]$ \(y^2+xy+y=x^3-456742x-118829710\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 184.24.0.?, 344.24.0.?, $\ldots$ $[(-66356/13, 671033/13)]$
255162.n2 255162.n \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $8.053423893$ $[1, 0, 1, -197882, 32758706]$ \(y^2+xy+y=x^3-197882x+32758706\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 172.12.0.?, 184.24.0.?, $\ldots$ $[(5406, 393478)]$
255162.n3 255162.n \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.026711946$ $[1, 0, 1, -31472, -1455190]$ \(y^2+xy+y=x^3-31472x-1455190\) 2.6.0.a.1, 8.12.0.a.1, 92.12.0.?, 172.12.0.?, 184.24.0.?, $\ldots$ $[(-141, 499)]$
255162.n4 255162.n \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $8.053423893$ $[1, 0, 1, 5508, -153494]$ \(y^2+xy+y=x^3+5508x-153494\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(3701/11, 257673/11)]$
255162.o1 255162.o \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.799959075$ $[1, 0, 1, -23087, 3811106]$ \(y^2+xy+y=x^3-23087x+3811106\) 8.2.0.a.1 $[(-198, 892)]$
255162.p1 255162.p \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $6.545221621$ $[1, 0, 1, 286556, 62468438]$ \(y^2+xy+y=x^3+286556x+62468438\) 516.2.0.? $[(1240809/17, 1382890349/17)]$
255162.q1 255162.q \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.227866924$ $[1, 0, 1, -805028753, -12946807122460]$ \(y^2+xy+y=x^3-805028753x-12946807122460\) 516.2.0.? $[(34635, 830554)]$
255162.r1 255162.r \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.393131270$ $[1, 0, 1, -9145193, 10666213484]$ \(y^2+xy+y=x^3-9145193x+10666213484\) 516.2.0.? $[(-25261/5, 17236602/5)]$
255162.s1 255162.s \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $12.45231939$ $[1, 0, 1, 445570, 331997168]$ \(y^2+xy+y=x^3+445570x+331997168\) 7912.2.0.? $[(-53689704/341, 218522909984/341)]$
255162.t1 255162.t \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.420498659$ $[1, 1, 1, 241, -4075]$ \(y^2+xy+y=x^3+x^2+241x-4075\) 7912.2.0.? $[(39, 238)]$
255162.u1 255162.u \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $10.42093395$ $[1, 1, 1, -1424693, -112416997]$ \(y^2+xy+y=x^3+x^2-1424693x-112416997\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 92.6.0.?, $\ldots$ $[(59213, 14376340)]$
255162.u2 255162.u \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $31.26280185$ $[1, 1, 1, -1064138, -422960245]$ \(y^2+xy+y=x^3+x^2-1064138x-422960245\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 92.6.0.?, $\ldots$ $[(49011319473329/86095, 336585925306363218827/86095)]$
255162.u3 255162.u \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $15.63140092$ $[1, 1, 1, -65678, -6802117]$ \(y^2+xy+y=x^3+x^2-65678x-6802117\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 46.6.0.a.1, $\ldots$ $[(36897471/335, 95237113901/335)]$
255162.u4 255162.u \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/2\Z$ $5.210466975$ $[1, 1, 1, 350347, -13724773]$ \(y^2+xy+y=x^3+x^2+350347x-13724773\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 46.6.0.a.1, $\ldots$ $[(45, 1438)]$
255162.v1 255162.v \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.612533240$ $[1, 1, 1, 155, -721]$ \(y^2+xy+y=x^3+x^2+155x-721\) 516.2.0.? $[(39, 238)]$
255162.w1 255162.w \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -42686977, -303180372481]$ \(y^2+xy+y=x^3+x^2-42686977x-303180372481\) 8.2.0.a.1 $[ ]$
255162.x1 255162.x \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.344825353$ $[1, 1, 1, -11792708479, 492976998717413]$ \(y^2+xy+y=x^3+x^2-11792708479x+492976998717413\) 516.2.0.? $[(376573/4, 966608491/4)]$
255162.y1 255162.y \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $11.77575066$ $[1, 1, 1, -5093109, -4833905061]$ \(y^2+xy+y=x^3+x^2-5093109x-4833905061\) 516.2.0.? $[(26180463/22, 133552048389/22)]$
255162.z1 255162.z \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.102356248$ $[1, 0, 0, -28612, 11925776]$ \(y^2+xy=x^3-28612x+11925776\) 276.2.0.? $[(92, 3128)]$
255162.ba1 255162.ba \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.291675097$ $[1, 0, 0, -270917, 72410049]$ \(y^2+xy=x^3-270917x+72410049\) 516.2.0.? $[(412, 5341)]$
255162.bb1 255162.bb \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.633736340$ $[1, 0, 0, -627774, 3904982118]$ \(y^2+xy=x^3-627774x+3904982118\) 8.2.0.a.1 $[(-1233/2, 511557/2)]$
255162.bc1 255162.bc \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $1.115239842$ $[1, 0, 0, 3508439, -28432787203]$ \(y^2+xy=x^3+3508439x-28432787203\) 516.2.0.? $[(4282, 253021)]$
255162.bd1 255162.bd \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\Z/3\Z$ $4.799608522$ $[1, 0, 0, -786788, 394430040]$ \(y^2+xy=x^3-786788x+394430040\) 3.8.0-3.a.1.2, 8.2.0.a.1, 24.16.0-24.a.1.8 $[(658, 12388)]$
255162.bd2 255162.bd \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $14.39882556$ $[1, 0, 0, 6368842, -5815225674]$ \(y^2+xy=x^3+6368842x-5815225674\) 3.8.0-3.a.1.1, 8.2.0.a.1, 24.16.0-24.a.1.6 $[(1708477/28, 2954876077/28)]$
255162.be1 255162.be \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.343085579$ $[1, 0, 0, -748, -16]$ \(y^2+xy=x^3-748x-16\) 552.2.0.? $[(-4, 56)]$
255162.bf1 255162.bf \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -60, 414]$ \(y^2+xy=x^3-60x+414\) 184.2.0.? $[ ]$
255162.bg1 255162.bg \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $0.249669088$ $[1, 0, 0, -330085, 73001729]$ \(y^2+xy=x^3-330085x+73001729\) 276.2.0.? $[(326, 95)]$
255162.bh1 255162.bh \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1307, -17775]$ \(y^2+xy=x^3-1307x-17775\) 2.3.0.a.1, 24.6.0.j.1, 258.6.0.?, 344.6.0.?, 1032.12.0.? $[ ]$
255162.bh2 255162.bh \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 413, -60775]$ \(y^2+xy=x^3+413x-60775\) 2.3.0.a.1, 24.6.0.j.1, 344.6.0.?, 516.6.0.?, 1032.12.0.? $[ ]$
255162.bi1 255162.bi \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -58282, -5416210]$ \(y^2+xy=x^3-58282x-5416210\) 2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? $[ ]$
255162.bi2 255162.bi \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -2812, -124372]$ \(y^2+xy=x^3-2812x-124372\) 2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? $[ ]$
255162.bj1 255162.bj \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $3.077947200$ $[1, 0, 0, -108156369, -432947577303]$ \(y^2+xy=x^3-108156369x-432947577303\) 516.2.0.? $[(43154, 8653931)]$
255162.bk1 255162.bk \( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $9.300467748$ $[1, 0, 0, 167296, 83398656]$ \(y^2+xy=x^3+167296x+83398656\) 276.2.0.? $[(-1875/4, 508449/4)]$
  displayed columns for results