| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 255162.a1 |
255162a1 |
255162.a |
255162a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{12} \cdot 3 \cdot 23 \cdot 43^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$276$ |
$2$ |
$0$ |
$2.196306567$ |
$1$ |
|
$8$ |
$193536$ |
$0.354652$ |
$44302943/282624$ |
$0.86015$ |
$2.20359$ |
$[1, 1, 0, 91, -1011]$ |
\(y^2+xy=x^3+x^2+91x-1011\) |
276.2.0.? |
$[(10, 27), (7, 2)]$ |
| 255162.b1 |
255162b1 |
255162.b |
255162b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3 \cdot 23^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1.320234363$ |
$1$ |
|
$4$ |
$1419264$ |
$1.604631$ |
$23639903/272964$ |
$0.82161$ |
$3.41275$ |
$[1, 1, 0, 11056, 1952436]$ |
\(y^2+xy=x^3+x^2+11056x+1952436\) |
516.2.0.? |
$[(82, 1808)]$ |
| 255162.c1 |
255162c1 |
255162.c |
255162c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{6} \cdot 3 \cdot 23^{2} \cdot 43^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1032$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9354048$ |
$2.555107$ |
$3105745579/101568$ |
$0.87452$ |
$4.47461$ |
$[1, 1, 0, -2416681, 1403570245]$ |
\(y^2+xy=x^3+x^2-2416681x+1403570245\) |
2.3.0.a.1, 24.6.0.j.1, 258.6.0.?, 344.6.0.?, 1032.12.0.? |
$[ ]$ |
| 255162.c2 |
255162c2 |
255162.c |
255162c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 23^{4} \cdot 43^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1032$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18708096$ |
$2.901680$ |
$97972181/20148552$ |
$0.96797$ |
$4.66851$ |
$[1, 1, 0, 763599, 4835092365]$ |
\(y^2+xy=x^3+x^2+763599x+4835092365\) |
2.3.0.a.1, 24.6.0.j.1, 344.6.0.?, 516.6.0.?, 1032.12.0.? |
$[ ]$ |
| 255162.d1 |
255162d1 |
255162.d |
255162d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{20} \cdot 3^{3} \cdot 23 \cdot 43^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$276$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$83220480$ |
$3.772789$ |
$-1163395392932641/651165696$ |
$0.98863$ |
$5.80764$ |
$[1, 1, 0, -610327203, -5806589776371]$ |
\(y^2+xy=x^3+x^2-610327203x-5806589776371\) |
276.2.0.? |
$[ ]$ |
| 255162.e1 |
255162e1 |
255162.e |
255162e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2 \cdot 3^{6} \cdot 23 \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$184$ |
$2$ |
$0$ |
$7.252645554$ |
$1$ |
|
$0$ |
$4854528$ |
$2.063488$ |
$-12932809/33534$ |
$0.82423$ |
$3.86887$ |
$[1, 1, 0, -110978, -33359766]$ |
\(y^2+xy=x^3+x^2-110978x-33359766\) |
184.2.0.? |
$[(947639/26, 878406859/26)]$ |
| 255162.f1 |
255162f1 |
255162.f |
255162f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{5} \cdot 3^{9} \cdot 23 \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$552$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8452080$ |
$2.570995$ |
$25033863625/14486688$ |
$1.17912$ |
$4.34013$ |
$[1, 1, 0, -1383090, -4260204]$ |
\(y^2+xy=x^3+x^2-1383090x-4260204\) |
552.2.0.? |
$[ ]$ |
| 255162.g1 |
255162g1 |
255162.g |
255162g |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 23^{2} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$1032$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$217728$ |
$0.572747$ |
$-4608390625/3085128$ |
$0.93001$ |
$2.45326$ |
$[1, 1, 0, -425, -5139]$ |
\(y^2+xy=x^3+x^2-425x-5139\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 129.8.0.?, 1032.16.0.? |
$[ ]$ |
| 255162.g2 |
255162g2 |
255162.g |
255162g |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2 \cdot 3^{2} \cdot 23^{6} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$1032$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$653184$ |
$1.122053$ |
$2444316773375/2664646002$ |
$0.93625$ |
$2.89544$ |
$[1, 1, 0, 3445, 74583]$ |
\(y^2+xy=x^3+x^2+3445x+74583\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 129.8.0.?, 1032.16.0.? |
$[ ]$ |
| 255162.h1 |
255162h1 |
255162.h |
255162h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2 \cdot 3^{12} \cdot 23^{2} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$314496$ |
$0.985068$ |
$-2340917377/562264578$ |
$0.97103$ |
$2.82152$ |
$[1, 1, 0, -339, -49257]$ |
\(y^2+xy=x^3+x^2-339x-49257\) |
8.2.0.a.1 |
$[ ]$ |
| 255162.i1 |
255162i1 |
255162.i |
255162i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 23^{5} \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$276$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$93623040$ |
$3.780720$ |
$-1400981494527817/32431754052864$ |
$1.11398$ |
$5.51655$ |
$[1, 1, 0, -52903626, -948394286892]$ |
\(y^2+xy=x^3+x^2-52903626x-948394286892\) |
276.2.0.? |
$[ ]$ |
| 255162.j1 |
255162j1 |
255162.j |
255162j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{8} \cdot 3 \cdot 23^{8} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$3.315534758$ |
$1$ |
|
$0$ |
$14643200$ |
$2.592087$ |
$-360867939678055608499/60142836695808$ |
$1.02338$ |
$4.70848$ |
$[1, 0, 1, -6377885, -6201015880]$ |
\(y^2+xy+y=x^3-6377885x-6201015880\) |
516.2.0.? |
$[(26251/3, 57946/3)]$ |
| 255162.k1 |
255162k1 |
255162.k |
255162k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 23^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$0.731230368$ |
$1$ |
|
$2$ |
$2838528$ |
$1.901310$ |
$-7189057/9826704$ |
$0.91553$ |
$3.70476$ |
$[1, 0, 1, -7435, -11994490]$ |
\(y^2+xy+y=x^3-7435x-11994490\) |
516.2.0.? |
$[(799, 21788)]$ |
| 255162.l1 |
255162l2 |
255162.l |
255162l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{5} \cdot 3^{3} \cdot 23^{2} \cdot 43^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$552$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$33707520$ |
$2.928043$ |
$5702431948159393/1562583509856$ |
$0.93987$ |
$4.72679$ |
$[1, 0, 1, -6882017, 5041599860]$ |
\(y^2+xy+y=x^3-6882017x+5041599860\) |
2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? |
$[ ]$ |
| 255162.l2 |
255162l1 |
255162.l |
255162l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 23 \cdot 43^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$552$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$16853760$ |
$2.581470$ |
$23647316984927/31746235392$ |
$0.91727$ |
$4.30847$ |
$[1, 0, 1, 1105663, 514182836]$ |
\(y^2+xy+y=x^3+1105663x+514182836\) |
2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? |
$[ ]$ |
| 255162.m1 |
255162m1 |
255162.m |
255162m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{13} \cdot 3^{8} \cdot 23 \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$0.806861790$ |
$1$ |
|
$4$ |
$41513472$ |
$3.244411$ |
$-5032738790353/98286344773632$ |
$1.03656$ |
$4.99940$ |
$[1, 0, 1, -660132, 37924152994]$ |
\(y^2+xy+y=x^3-660132x+37924152994\) |
7912.2.0.? |
$[(10388, 1068150)]$ |
| 255162.n1 |
255162n4 |
255162.n |
255162n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2 \cdot 3^{8} \cdot 23 \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$7912$ |
$48$ |
$0$ |
$8.053423893$ |
$1$ |
|
$0$ |
$2515968$ |
$1.935614$ |
$1666957239793/301806$ |
$1.06466$ |
$4.07314$ |
$[1, 0, 1, -456742, -118829710]$ |
\(y^2+xy+y=x^3-456742x-118829710\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 184.24.0.?, 344.24.0.?, $\ldots$ |
$[(-66356/13, 671033/13)]$ |
| 255162.n2 |
255162n3 |
255162.n |
255162n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2 \cdot 3^{2} \cdot 23^{4} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$7912$ |
$48$ |
$0$ |
$8.053423893$ |
$1$ |
|
$2$ |
$2515968$ |
$1.935614$ |
$135559106353/5037138$ |
$0.97631$ |
$3.87158$ |
$[1, 0, 1, -197882, 32758706]$ |
\(y^2+xy+y=x^3-197882x+32758706\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 172.12.0.?, 184.24.0.?, $\ldots$ |
$[(5406, 393478)]$ |
| 255162.n3 |
255162n2 |
255162.n |
255162n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{2} \cdot 3^{4} \cdot 23^{2} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$7912$ |
$48$ |
$0$ |
$4.026711946$ |
$1$ |
|
$6$ |
$1257984$ |
$1.589041$ |
$545338513/171396$ |
$0.94447$ |
$3.42854$ |
$[1, 0, 1, -31472, -1455190]$ |
\(y^2+xy+y=x^3-31472x-1455190\) |
2.6.0.a.1, 8.12.0.a.1, 92.12.0.?, 172.12.0.?, 184.24.0.?, $\ldots$ |
$[(-141, 499)]$ |
| 255162.n4 |
255162n1 |
255162.n |
255162n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{4} \cdot 3^{2} \cdot 23 \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$7912$ |
$48$ |
$0$ |
$8.053423893$ |
$1$ |
|
$1$ |
$628992$ |
$1.242468$ |
$2924207/3312$ |
$0.89878$ |
$3.00858$ |
$[1, 0, 1, 5508, -153494]$ |
\(y^2+xy+y=x^3+5508x-153494\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 46.6.0.a.1, 92.12.0.?, $\ldots$ |
$[(3701/11, 257673/11)]$ |
| 255162.o1 |
255162o1 |
255162.o |
255162o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{17} \cdot 3^{4} \cdot 23^{4} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.799959075$ |
$1$ |
|
$4$ |
$1553664$ |
$1.705500$ |
$-735973654727473/2971024883712$ |
$0.98132$ |
$3.52066$ |
$[1, 0, 1, -23087, 3811106]$ |
\(y^2+xy+y=x^3-23087x+3811106\) |
8.2.0.a.1 |
$[(-198, 892)]$ |
| 255162.p1 |
255162p1 |
255162.p |
255162p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3 \cdot 23^{2} \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$6.545221621$ |
$1$ |
|
$0$ |
$4238080$ |
$2.236679$ |
$5177717/6348$ |
$0.82091$ |
$3.96981$ |
$[1, 0, 1, 286556, 62468438]$ |
\(y^2+xy+y=x^3+286556x+62468438\) |
516.2.0.? |
$[(1240809/17, 1382890349/17)]$ |
| 255162.q1 |
255162q1 |
255162.q |
255162q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{26} \cdot 3^{7} \cdot 23^{2} \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$3.227866924$ |
$1$ |
|
$4$ |
$193729536$ |
$4.186722$ |
$-9127401493139647689889/6172906645622882304$ |
$1.00246$ |
$5.93646$ |
$[1, 0, 1, -805028753, -12946807122460]$ |
\(y^2+xy+y=x^3-805028753x-12946807122460\) |
516.2.0.? |
$[(34635, 830554)]$ |
| 255162.r1 |
255162r1 |
255162.r |
255162r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{8} \cdot 3 \cdot 23^{2} \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$3.393131270$ |
$1$ |
|
$0$ |
$17031168$ |
$2.776184$ |
$-13381091368208929/32301467904$ |
$0.93698$ |
$4.79563$ |
$[1, 0, 1, -9145193, 10666213484]$ |
\(y^2+xy+y=x^3-9145193x+10666213484\) |
516.2.0.? |
$[(-25261/5, 17236602/5)]$ |
| 255162.s1 |
255162s1 |
255162.s |
255162s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{9} \cdot 3^{2} \cdot 23 \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$12.45231939$ |
$1$ |
|
$0$ |
$6811200$ |
$2.467228$ |
$19465109/105984$ |
$0.87038$ |
$4.23821$ |
$[1, 0, 1, 445570, 331997168]$ |
\(y^2+xy+y=x^3+445570x+331997168\) |
7912.2.0.? |
$[(-53689704/341, 218522909984/341)]$ |
| 255162.t1 |
255162t1 |
255162.t |
255162t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{9} \cdot 3^{2} \cdot 23 \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7912$ |
$2$ |
$0$ |
$0.420498659$ |
$1$ |
|
$6$ |
$158400$ |
$0.586628$ |
$19465109/105984$ |
$0.87038$ |
$2.42553$ |
$[1, 1, 1, 241, -4075]$ |
\(y^2+xy+y=x^3+x^2+241x-4075\) |
7912.2.0.? |
$[(39, 238)]$ |
| 255162.u1 |
255162u4 |
255162.u |
255162u |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{6} \cdot 3 \cdot 23^{6} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$11868$ |
$96$ |
$1$ |
$10.42093395$ |
$1$ |
|
$2$ |
$7789824$ |
$2.576611$ |
$50591419971625/28422890688$ |
$1.07125$ |
$4.34727$ |
$[1, 1, 1, -1424693, -112416997]$ |
\(y^2+xy+y=x^3+x^2-1424693x-112416997\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 92.6.0.?, $\ldots$ |
$[(59213, 14376340)]$ |
| 255162.u2 |
255162u2 |
255162.u |
255162u |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{2} \cdot 3^{3} \cdot 23^{2} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$11868$ |
$96$ |
$1$ |
$31.26280185$ |
$1$ |
|
$0$ |
$2596608$ |
$2.027306$ |
$21081759765625/57132$ |
$1.12484$ |
$4.27696$ |
$[1, 1, 1, -1064138, -422960245]$ |
\(y^2+xy+y=x^3+x^2-1064138x-422960245\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 92.6.0.?, $\ldots$ |
$[(49011319473329/86095, 336585925306363218827/86095)]$ |
| 255162.u3 |
255162u1 |
255162.u |
255162u |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 23 \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$11868$ |
$96$ |
$1$ |
$15.63140092$ |
$1$ |
|
$1$ |
$1298304$ |
$1.680731$ |
$-4956477625/268272$ |
$0.95072$ |
$3.61300$ |
$[1, 1, 1, -65678, -6802117]$ |
\(y^2+xy+y=x^3+x^2-65678x-6802117\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 46.6.0.a.1, $\ldots$ |
$[(36897471/335, 95237113901/335)]$ |
| 255162.u4 |
255162u3 |
255162.u |
255162u |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{12} \cdot 3^{2} \cdot 23^{3} \cdot 43^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$11868$ |
$96$ |
$1$ |
$5.210466975$ |
$1$ |
|
$5$ |
$3894912$ |
$2.230038$ |
$752329532375/448524288$ |
$1.05431$ |
$4.00924$ |
$[1, 1, 1, 350347, -13724773]$ |
\(y^2+xy+y=x^3+x^2+350347x-13724773\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 46.6.0.a.1, $\ldots$ |
$[(45, 1438)]$ |
| 255162.v1 |
255162v1 |
255162.v |
255162v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3 \cdot 23^{2} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1.612533240$ |
$1$ |
|
$2$ |
$98560$ |
$0.356078$ |
$5177717/6348$ |
$0.82091$ |
$2.15713$ |
$[1, 1, 1, 155, -721]$ |
\(y^2+xy+y=x^3+x^2+155x-721\) |
516.2.0.? |
$[(39, 238)]$ |
| 255162.w1 |
255162w1 |
255162.w |
255162w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{17} \cdot 3^{4} \cdot 23^{4} \cdot 43^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$66807552$ |
$3.586102$ |
$-735973654727473/2971024883712$ |
$0.98132$ |
$5.33334$ |
$[1, 1, 1, -42686977, -303180372481]$ |
\(y^2+xy+y=x^3+x^2-42686977x-303180372481\) |
8.2.0.a.1 |
$[ ]$ |
| 255162.x1 |
255162x1 |
255162.x |
255162x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{8} \cdot 3 \cdot 23^{8} \cdot 43^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$2.344825353$ |
$1$ |
|
$0$ |
$629657600$ |
$4.472687$ |
$-360867939678055608499/60142836695808$ |
$1.02338$ |
$6.52116$ |
$[1, 1, 1, -11792708479, 492976998717413]$ |
\(y^2+xy+y=x^3+x^2-11792708479x+492976998717413\) |
516.2.0.? |
$[(376573/4, 966608491/4)]$ |
| 255162.y1 |
255162y1 |
255162.y |
255162y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{6} \cdot 3^{11} \cdot 23^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$11.77575066$ |
$1$ |
|
$0$ |
$23417856$ |
$2.807549$ |
$-2311329681462313/257892019776$ |
$0.92932$ |
$4.66841$ |
$[1, 1, 1, -5093109, -4833905061]$ |
\(y^2+xy+y=x^3+x^2-5093109x-4833905061\) |
516.2.0.? |
$[(26180463/22, 133552048389/22)]$ |
| 255162.z1 |
255162z1 |
255162.z |
255162z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 23^{5} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$276$ |
$2$ |
$0$ |
$0.102356248$ |
$1$ |
|
$10$ |
$2177280$ |
$1.900118$ |
$-1400981494527817/32431754052864$ |
$1.11398$ |
$3.70388$ |
$[1, 0, 0, -28612, 11925776]$ |
\(y^2+xy=x^3-28612x+11925776\) |
276.2.0.? |
$[(92, 3128)]$ |
| 255162.ba1 |
255162ba1 |
255162.ba |
255162ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 23^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$0.291675097$ |
$1$ |
|
$6$ |
$5677056$ |
$2.160049$ |
$-347873904937/157227264$ |
$0.87242$ |
$3.99364$ |
$[1, 0, 0, -270917, 72410049]$ |
\(y^2+xy=x^3-270917x+72410049\) |
516.2.0.? |
$[(412, 5341)]$ |
| 255162.bb1 |
255162bb1 |
255162.bb |
255162bb |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2 \cdot 3^{12} \cdot 23^{2} \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.633736340$ |
$1$ |
|
$0$ |
$13523328$ |
$2.865669$ |
$-2340917377/562264578$ |
$0.97103$ |
$4.63420$ |
$[1, 0, 0, -627774, 3904982118]$ |
\(y^2+xy=x^3-627774x+3904982118\) |
8.2.0.a.1 |
$[(-1233/2, 511557/2)]$ |
| 255162.bc1 |
255162bc1 |
255162.bc |
255162bc |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3^{7} \cdot 23^{6} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1.115239842$ |
$1$ |
|
$2$ |
$29804544$ |
$3.197704$ |
$755535301286039/55685772149796$ |
$0.98610$ |
$4.95313$ |
$[1, 0, 0, 3508439, -28432787203]$ |
\(y^2+xy=x^3+3508439x-28432787203\) |
516.2.0.? |
$[(4282, 253021)]$ |
| 255162.bd1 |
255162bd1 |
255162.bd |
255162bd |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 23^{2} \cdot 43^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.8.0.1 |
3B.1.1 |
$24$ |
$16$ |
$0$ |
$4.799608522$ |
$1$ |
|
$4$ |
$9362304$ |
$2.453346$ |
$-4608390625/3085128$ |
$0.93001$ |
$4.26593$ |
$[1, 0, 0, -786788, 394430040]$ |
\(y^2+xy=x^3-786788x+394430040\) |
3.8.0-3.a.1.2, 8.2.0.a.1, 24.16.0-24.a.1.8 |
$[(658, 12388)]$ |
| 255162.bd2 |
255162bd2 |
255162.bd |
255162bd |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2 \cdot 3^{2} \cdot 23^{6} \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.8.0.2 |
3B.1.2 |
$24$ |
$16$ |
$0$ |
$14.39882556$ |
$1$ |
|
$0$ |
$28086912$ |
$3.002655$ |
$2444316773375/2664646002$ |
$0.93625$ |
$4.70811$ |
$[1, 0, 0, 6368842, -5815225674]$ |
\(y^2+xy=x^3+6368842x-5815225674\) |
3.8.0-3.a.1.1, 8.2.0.a.1, 24.16.0-24.a.1.6 |
$[(1708477/28, 2954876077/28)]$ |
| 255162.be1 |
255162be1 |
255162.be |
255162be |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{5} \cdot 3^{9} \cdot 23 \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$552$ |
$2$ |
$0$ |
$0.343085579$ |
$1$ |
|
$6$ |
$196560$ |
$0.690396$ |
$25033863625/14486688$ |
$1.17912$ |
$2.52745$ |
$[1, 0, 0, -748, -16]$ |
\(y^2+xy=x^3-748x-16\) |
552.2.0.? |
$[(-4, 56)]$ |
| 255162.bf1 |
255162bf1 |
255162.bf |
255162bf |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2 \cdot 3^{6} \cdot 23 \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$112896$ |
$0.182886$ |
$-12932809/33534$ |
$0.82423$ |
$2.05619$ |
$[1, 0, 0, -60, 414]$ |
\(y^2+xy=x^3-60x+414\) |
184.2.0.? |
$[ ]$ |
| 255162.bg1 |
255162bg1 |
255162.bg |
255162bg |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{20} \cdot 3^{3} \cdot 23 \cdot 43^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$276$ |
$2$ |
$0$ |
$0.249669088$ |
$1$ |
|
$6$ |
$1935360$ |
$1.892187$ |
$-1163395392932641/651165696$ |
$0.98863$ |
$3.99496$ |
$[1, 0, 0, -330085, 73001729]$ |
\(y^2+xy=x^3-330085x+73001729\) |
276.2.0.? |
$[(326, 95)]$ |
| 255162.bh1 |
255162bh1 |
255162.bh |
255162bh |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2^{6} \cdot 3 \cdot 23^{2} \cdot 43^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1032$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$217536$ |
$0.674508$ |
$3105745579/101568$ |
$0.87452$ |
$2.66193$ |
$[1, 0, 0, -1307, -17775]$ |
\(y^2+xy=x^3-1307x-17775\) |
2.3.0.a.1, 24.6.0.j.1, 258.6.0.?, 344.6.0.?, 1032.12.0.? |
$[ ]$ |
| 255162.bh2 |
255162bh2 |
255162.bh |
255162bh |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 23^{4} \cdot 43^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1032$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$435072$ |
$1.021082$ |
$97972181/20148552$ |
$0.96797$ |
$2.85583$ |
$[1, 0, 0, 413, -60775]$ |
\(y^2+xy=x^3+413x-60775\) |
2.3.0.a.1, 24.6.0.j.1, 344.6.0.?, 516.6.0.?, 1032.12.0.? |
$[ ]$ |
| 255162.bi1 |
255162bi2 |
255162.bi |
255162bi |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( 2 \cdot 3 \cdot 23^{2} \cdot 43^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$552$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1204224$ |
$1.476048$ |
$3463512697/3174$ |
$0.94552$ |
$3.57703$ |
$[1, 0, 0, -58282, -5416210]$ |
\(y^2+xy=x^3-58282x-5416210\) |
2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? |
$[ ]$ |
| 255162.bi2 |
255162bi1 |
255162.bi |
255162bi |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{2} \cdot 3^{2} \cdot 23 \cdot 43^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$552$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$602112$ |
$1.129475$ |
$-389017/828$ |
$0.87759$ |
$2.97048$ |
$[1, 0, 0, -2812, -124372]$ |
\(y^2+xy=x^3-2812x-124372\) |
2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? |
$[ ]$ |
| 255162.bj1 |
255162bj1 |
255162.bj |
255162bj |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{10} \cdot 3^{3} \cdot 23^{2} \cdot 43^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$3.077947200$ |
$1$ |
|
$2$ |
$35481600$ |
$3.078720$ |
$-22134477536965464553/628909056$ |
$0.97240$ |
$5.39058$ |
$[1, 0, 0, -108156369, -432947577303]$ |
\(y^2+xy=x^3-108156369x-432947577303\) |
516.2.0.? |
$[(43154, 8653931)]$ |
| 255162.bk1 |
255162bk1 |
255162.bk |
255162bk |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23 \cdot 43^{2} \) |
\( - 2^{12} \cdot 3 \cdot 23 \cdot 43^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$276$ |
$2$ |
$0$ |
$9.300467748$ |
$1$ |
|
$0$ |
$8322048$ |
$2.235252$ |
$44302943/282624$ |
$0.86015$ |
$4.01626$ |
$[1, 0, 0, 167296, 83398656]$ |
\(y^2+xy=x^3+167296x+83398656\) |
276.2.0.? |
$[(-1875/4, 508449/4)]$ |