Learn more

Refine search


Results (1-50 of 206 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
25410.a1 25410.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.940693595$ $[1, 1, 0, -1023178, -398784668]$ \(y^2+xy=x^3+x^2-1023178x-398784668\) 2.3.0.a.1, 44.6.0.a.1, 140.6.0.?, 1540.12.0.? $[(-584, 322)]$
25410.a2 25410.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.881387191$ $[1, 1, 0, -64858, -6065132]$ \(y^2+xy=x^3+x^2-64858x-6065132\) 2.3.0.a.1, 44.6.0.b.1, 140.6.0.?, 770.6.0.?, 1540.12.0.? $[(436, 6766)]$
25410.b1 25410.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 1692, -110238]$ \(y^2+xy=x^3+x^2+1692x-110238\) 168.2.0.? $[ ]$
25410.c1 25410.c \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -11893, -504203]$ \(y^2+xy=x^3+x^2-11893x-504203\) 168.2.0.? $[ ]$
25410.d1 25410.d \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -32298, 2252628]$ \(y^2+xy=x^3+x^2-32298x+2252628\) 840.2.0.? $[ ]$
25410.e1 25410.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $41.79266293$ $[1, 1, 0, -384324558, -2863614998988]$ \(y^2+xy=x^3+x^2-384324558x-2863614998988\) 2.3.0.a.1, 220.6.0.?, 280.6.0.?, 616.6.0.?, 3080.12.0.? $[(101544356780082101679/33872495, 993953686962910614984601311918/33872495)]$
25410.e2 25410.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $20.89633146$ $[1, 1, 0, -2700238, -121338960332]$ \(y^2+xy=x^3+x^2-2700238x-121338960332\) 2.3.0.a.1, 110.6.0.?, 280.6.0.?, 616.6.0.?, 3080.12.0.? $[(246036560503/6373, 74523590439861283/6373)]$
25410.f1 25410.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.362543420$ $[1, 1, 0, -2928, 59778]$ \(y^2+xy=x^3+x^2-2928x+59778\) 2.3.0.a.1, 88.6.0.?, 168.6.0.?, 924.6.0.?, 1848.12.0.? $[(29, 3)]$
25410.f2 25410.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.725086841$ $[1, 1, 0, -178, 928]$ \(y^2+xy=x^3+x^2-178x+928\) 2.3.0.a.1, 88.6.0.?, 168.6.0.?, 462.6.0.?, 1848.12.0.? $[(9, 8)]$
25410.g1 25410.g \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -573058, -8680835852]$ \(y^2+xy=x^3+x^2-573058x-8680835852\) 840.2.0.? $[ ]$
25410.h1 25410.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.111319761$ $[1, 1, 0, -3991913, -3071494257]$ \(y^2+xy=x^3+x^2-3991913x-3071494257\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 56.12.0.s.1, 88.12.0.?, $\ldots$ $[(-1151, 663)]$
25410.h2 25410.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.055659880$ $[1, 1, 0, -256643, -45178503]$ \(y^2+xy=x^3+x^2-256643x-45178503\) 2.6.0.a.1, 20.12.0-2.a.1.1, 56.12.0.b.1, 88.12.0.?, 280.24.0.?, $\ldots$ $[(-304, 2357)]$
25410.h3 25410.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.527829940$ $[1, 1, 0, -60623, 4963413]$ \(y^2+xy=x^3+x^2-60623x+4963413\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 56.12.0.y.1, 88.12.0.?, $\ldots$ $[(226, 1581)]$
25410.h4 25410.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.111319761$ $[1, 1, 0, 342307, -224024973]$ \(y^2+xy=x^3+x^2+342307x-224024973\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 56.12.0.y.1, 88.12.0.?, $\ldots$ $[(1027, 34301)]$
25410.i1 25410.i \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.420274106$ $[1, 1, 0, 1692, -22392]$ \(y^2+xy=x^3+x^2+1692x-22392\) 280.2.0.? $[(21, 141)]$
25410.j1 25410.j \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.192189865$ $[1, 1, 0, -2312, 40836]$ \(y^2+xy=x^3+x^2-2312x+40836\) 2.3.0.a.1, 44.6.0.a.1, 140.6.0.?, 1540.12.0.? $[(17, 74), (22, 24)]$
25410.j2 25410.j \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $2$ $\Z/2\Z$ $0.768759460$ $[1, 1, 0, -332, -1536]$ \(y^2+xy=x^3+x^2-332x-1536\) 2.3.0.a.1, 44.6.0.b.1, 140.6.0.?, 770.6.0.?, 1540.12.0.? $[(-7, 26), (83, 701)]$
25410.k1 25410.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.333220766$ $[1, 1, 0, -604397, 180595881]$ \(y^2+xy=x^3+x^2-604397x+180595881\) 2.3.0.a.1, 24.6.0.c.1, 770.6.0.?, 9240.12.0.? $[(457, 74)]$
25410.k2 25410.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.666441532$ $[1, 1, 0, -571727, 201027699]$ \(y^2+xy=x^3+x^2-571727x+201027699\) 2.3.0.a.1, 24.6.0.b.1, 1540.6.0.?, 9240.12.0.? $[(-137, 16706)]$
25410.l1 25410.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.725438104$ $[1, 1, 0, -156697, 37222981]$ \(y^2+xy=x^3+x^2-156697x+37222981\) 280.2.0.? $[(655, 14374)]$
25410.m1 25410.m \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $4.447383279$ $[1, 1, 0, 355738, -50106693996]$ \(y^2+xy=x^3+x^2+355738x-50106693996\) 168.2.0.? $[(20983, 3022071)]$
25410.n1 25410.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.232331125$ $[1, 1, 0, -2032802, 1114707774]$ \(y^2+xy=x^3+x^2-2032802x+1114707774\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.1, 44.12.0-4.c.1.1, $\ldots$ $[(823, -399)]$
25410.n2 25410.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.616165562$ $[1, 1, 0, -127052, 17376924]$ \(y^2+xy=x^3+x^2-127052x+17376924\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 44.24.0-4.b.1.1, 56.48.0.n.1, $\ldots$ $[(83, 2681)]$
25410.n3 25410.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.232331125$ $[1, 1, 0, -118582, 19804426]$ \(y^2+xy=x^3+x^2-118582x+19804426\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 44.12.0-4.c.1.1, 56.48.0.bn.1, $\ldots$ $[(97, 2989)]$
25410.n4 25410.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.464662251$ $[1, 1, 0, -44772, -3465084]$ \(y^2+xy=x^3+x^2-44772x-3465084\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 44.12.0-4.c.1.2, 60.12.0.h.1, $\ldots$ $[(-115, 481)]$
25410.n5 25410.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.232331125$ $[1, 1, 0, -8472, 230256]$ \(y^2+xy=x^3+x^2-8472x+230256\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 44.24.0-4.b.1.3, 56.48.0.r.1, $\ldots$ $[(92, 444)]$
25410.n6 25410.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.464662251$ $[1, 1, 0, 1208, 23104]$ \(y^2+xy=x^3+x^2+1208x+23104\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.2, 30.6.0.a.1, $\ldots$ $[(0, 152)]$
25410.o1 25410.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $61.11381104$ $[1, 1, 0, -10794522532, -431675891342384]$ \(y^2+xy=x^3+x^2-10794522532x-431675891342384\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 44.12.0-4.c.1.2, 60.12.0.h.1, $\ldots$ $[(12976475867624937253639167075/260420639107, 1184142095332757691842475131647699662415472/260420639107)]$
25410.o2 25410.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $30.55690552$ $[1, 1, 0, -3174871812, 63020871963504]$ \(y^2+xy=x^3+x^2-3174871812x+63020871963504\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.1, 44.12.0-4.c.1.1, $\ldots$ $[(40915256376053/31061, 64004674710468351846/31061)]$
25410.o3 25410.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.27845276$ $[1, 1, 0, -705019812, -6104851842096]$ \(y^2+xy=x^3+x^2-705019812x-6104851842096\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 44.24.0-4.b.1.1, 56.48.0.n.1, $\ldots$ $[(-84667027/89, 326789866829/89)]$
25410.o4 25410.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $30.55690552$ $[1, 1, 0, -674663332, -6745027506224]$ \(y^2+xy=x^3+x^2-674663332x-6745027506224\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 44.24.0-4.b.1.3, 56.48.0.r.1, $\ldots$ $[(-2799725058841863/431561, 1576842028647034961869/431561)]$
25410.o5 25410.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $61.11381104$ $[1, 1, 0, -40274852, -115287257136]$ \(y^2+xy=x^3+x^2-40274852x-115287257136\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.2, 30.6.0.a.1, $\ldots$ $[(2838679719439526826619028545/510343755233, 113664446397359658824781608733213792288394/510343755233)]$
25410.o6 25410.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $30.55690552$ $[1, 1, 0, 1279128508, -34258726013904]$ \(y^2+xy=x^3+x^2+1279128508x-34258726013904\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 44.12.0-4.c.1.1, 56.48.0.bn.1, $\ldots$ $[(2229741838647837/56159, 105355747271147433733371/56159)]$
25410.p1 25410.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.691767877$ $[1, 1, 0, -43232, 3462144]$ \(y^2+xy=x^3+x^2-43232x+3462144\) 280.2.0.? $[(125, 113)]$
25410.q1 25410.q \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $10.70104199$ $[1, 1, 0, -36907, -4080611]$ \(y^2+xy=x^3+x^2-36907x-4080611\) 168.2.0.? $[(78777/13, 19171732/13)]$
25410.r1 25410.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.318268977$ $[1, 1, 0, -595927, -177121259]$ \(y^2+xy=x^3+x^2-595927x-177121259\) 2.3.0.a.1, 264.6.0.?, 770.6.0.?, 840.6.0.?, 9240.12.0.? $[(-458, 289)]$
25410.r2 25410.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $4.636537955$ $[1, 1, 0, -436207, -274007411]$ \(y^2+xy=x^3+x^2-436207x-274007411\) 2.3.0.a.1, 264.6.0.?, 840.6.0.?, 1540.6.0.?, 9240.12.0.? $[(873, 2951)]$
25410.s1 25410.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.512096287$ $[1, 1, 0, -3192, 67896]$ \(y^2+xy=x^3+x^2-3192x+67896\) 2.3.0.a.1, 220.6.0.?, 280.6.0.?, 616.6.0.?, 3080.12.0.? $[(17, 129)]$
25410.s2 25410.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.756048143$ $[1, 1, 0, -112, 1984]$ \(y^2+xy=x^3+x^2-112x+1984\) 2.3.0.a.1, 110.6.0.?, 280.6.0.?, 616.6.0.?, 3080.12.0.? $[(-5, 52)]$
25410.t1 25410.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -5728747, 5274492601]$ \(y^2+xy=x^3+x^2-5728747x+5274492601\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 10.6.0.a.1, 16.24.0-8.n.1.4, $\ldots$ $[ ]$
25410.t2 25410.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2386727, -1420221051]$ \(y^2+xy=x^3+x^2-2386727x-1420221051\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 44.12.0-4.c.1.2, 80.48.0.?, $\ldots$ $[ ]$
25410.t3 25410.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -392647, 65391781]$ \(y^2+xy=x^3+x^2-392647x+65391781\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.8, 20.24.0.c.1, 40.48.0-20.c.1.14, $\ldots$ $[ ]$
25410.t4 25410.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -150647, -21776619]$ \(y^2+xy=x^3+x^2-150647x-21776619\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.10, 40.48.0-40.m.1.14, 44.24.0-4.b.1.3, $\ldots$ $[ ]$
25410.t5 25410.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 4233, -1239531]$ \(y^2+xy=x^3+x^2+4233x-1239531\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.2, 40.24.0-8.n.1.8, $\ldots$ $[ ]$
25410.t6 25410.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1071453, 439908561]$ \(y^2+xy=x^3+x^2+1071453x+439908561\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 20.12.0.h.1, 40.48.0-40.bn.1.5, $\ldots$ $[ ]$
25410.u1 25410.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1270502, -551734476]$ \(y^2+xy=x^3+x^2-1270502x-551734476\) 840.2.0.? $[ ]$
25410.v1 25410.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $11.32132243$ $[1, 0, 1, -644204124, 6293317745416]$ \(y^2+xy+y=x^3-644204124x+6293317745416\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0-12.g.1.3, $\ldots$ $[(861256/5, 622682131/5)]$
25410.v2 25410.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $11.32132243$ $[1, 0, 1, -41321624, 92885463416]$ \(y^2+xy+y=x^3-41321624x+92885463416\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ $[(-38060/3, 11888104/3)]$
25410.v3 25410.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.660661219$ $[1, 0, 1, -40262874, 98329979416]$ \(y^2+xy+y=x^3-40262874x+98329979416\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0-6.a.1.6, 33.8.0-3.a.1.1, $\ldots$ $[(-4202, 441788)]$
25410.v4 25410.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.773774146$ $[1, 0, 1, -9076334, -10504736728]$ \(y^2+xy+y=x^3-9076334x-10504736728\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ $[(-1782, 4252)]$
Next   displayed columns for results