| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 25280.a1 |
25280i1 |
25280.a |
25280i |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5^{3} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$0.254939$ |
$221184/9875$ |
$0.85839$ |
$2.59855$ |
$[0, 0, 0, 32, -608]$ |
\(y^2=x^3+32x-608\) |
790.2.0.? |
$[ ]$ |
| 25280.b1 |
25280w2 |
25280.b |
25280w |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{16} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.483162001$ |
$1$ |
|
$3$ |
$10240$ |
$0.476878$ |
$55990084/31205$ |
$0.82963$ |
$2.85379$ |
$[0, 1, 0, -321, 319]$ |
\(y^2=x^3+x^2-321x+319\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(17, 8)]$ |
| 25280.b2 |
25280w1 |
25280.b |
25280w |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5^{2} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.241581000$ |
$1$ |
|
$7$ |
$5120$ |
$0.130304$ |
$3286064/1975$ |
$0.75109$ |
$2.43735$ |
$[0, 1, 0, 79, 79]$ |
\(y^2=x^3+x^2+79x+79\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(7, 32)]$ |
| 25280.c1 |
25280v2 |
25280.c |
25280v |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{22} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$7.209545072$ |
$1$ |
|
$3$ |
$49152$ |
$1.195436$ |
$8490912541201/499280$ |
$0.91378$ |
$4.16725$ |
$[0, 1, 0, -27201, -1735745]$ |
\(y^2=x^3+x^2-27201x-1735745\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(2609, 133016)]$ |
| 25280.c2 |
25280v1 |
25280.c |
25280v |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{26} \cdot 5^{2} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$3.604772536$ |
$1$ |
|
$5$ |
$24576$ |
$0.848864$ |
$-1732323601/505600$ |
$0.84355$ |
$3.36935$ |
$[0, 1, 0, -1601, -30785]$ |
\(y^2=x^3+x^2-1601x-30785\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(49, 104)]$ |
| 25280.d1 |
25280n1 |
25280.d |
25280n |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 5^{5} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$23040$ |
$0.850442$ |
$7234852182016/19503125$ |
$0.91477$ |
$3.60448$ |
$[0, 1, 0, -4061, 98035]$ |
\(y^2=x^3+x^2-4061x+98035\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
| 25280.d2 |
25280n2 |
25280.d |
25280n |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$46080$ |
$1.197016$ |
$-103123846096/771484375$ |
$0.90364$ |
$3.71848$ |
$[0, 1, 0, -2481, 176719]$ |
\(y^2=x^3+x^2-2481x+176719\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[ ]$ |
| 25280.e1 |
25280f2 |
25280.e |
25280f |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$10.72852644$ |
$1$ |
|
$1$ |
$73728$ |
$1.281128$ |
$32525910642961/780125$ |
$0.92329$ |
$4.29973$ |
$[0, 1, 0, -42561, -3393761]$ |
\(y^2=x^3+x^2-42561x-3393761\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(71093/13, 16042844/13)]$ |
| 25280.e2 |
25280f1 |
25280.e |
25280f |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{18} \cdot 5^{6} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$5.364263224$ |
$1$ |
|
$3$ |
$36864$ |
$0.934554$ |
$-7088952961/1234375$ |
$0.85603$ |
$3.49401$ |
$[0, 1, 0, -2561, -57761]$ |
\(y^2=x^3+x^2-2561x-57761\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(397, 7852)]$ |
| 25280.f1 |
25280o2 |
25280.f |
25280o |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{15} \cdot 5^{2} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$632$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$20480$ |
$0.620321$ |
$2998442888/156025$ |
$0.81662$ |
$3.17807$ |
$[0, 1, 0, -961, -11265]$ |
\(y^2=x^3+x^2-961x-11265\) |
2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? |
$[ ]$ |
| 25280.f2 |
25280o1 |
25280.f |
25280o |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{12} \cdot 5^{4} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$632$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10240$ |
$0.273748$ |
$1560896/49375$ |
$0.87592$ |
$2.62003$ |
$[0, 1, 0, 39, -665]$ |
\(y^2=x^3+x^2+39x-665\) |
2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? |
$[ ]$ |
| 25280.g1 |
25280s1 |
25280.g |
25280s |
$2$ |
$5$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5^{5} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3160$ |
$48$ |
$1$ |
$3.253691767$ |
$1$ |
|
$2$ |
$5440$ |
$0.178748$ |
$-14102327296/246875$ |
$0.85864$ |
$2.71838$ |
$[0, -1, 0, -201, -1049]$ |
\(y^2=x^3-x^2-201x-1049\) |
5.12.0.a.1, 40.24.0-5.a.1.1, 790.24.1.?, 3160.48.1.? |
$[(18, 29)]$ |
| 25280.g2 |
25280s2 |
25280.g |
25280s |
$2$ |
$5$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5 \cdot 79^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3160$ |
$48$ |
$1$ |
$0.650738353$ |
$1$ |
|
$2$ |
$27200$ |
$0.983467$ |
$2976041775104/15385281995$ |
$0.95926$ |
$3.44766$ |
$[0, -1, 0, 1199, 44591]$ |
\(y^2=x^3-x^2+1199x+44591\) |
5.12.0.a.2, 40.24.0-5.a.2.1, 790.24.1.?, 3160.48.1.? |
$[(338, 6241)]$ |
| 25280.h1 |
25280g1 |
25280.h |
25280g |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5 \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4608$ |
$0.064193$ |
$-7023616/395$ |
$0.70625$ |
$2.52142$ |
$[0, -1, 0, -101, 445]$ |
\(y^2=x^3-x^2-101x+445\) |
790.2.0.? |
$[ ]$ |
| 25280.i1 |
25280j1 |
25280.i |
25280j |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5 \cdot 79^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$47232$ |
$1.344297$ |
$-5058897720777362944/2465195$ |
$0.98500$ |
$4.65848$ |
$[0, -1, 0, -143055, 20873605]$ |
\(y^2=x^3-x^2-143055x+20873605\) |
790.2.0.? |
$[ ]$ |
| 25280.j1 |
25280z1 |
25280.j |
25280z |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5 \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2176$ |
$-0.471068$ |
$175616/395$ |
$0.65291$ |
$1.70600$ |
$[0, -1, 0, 5, 5]$ |
\(y^2=x^3-x^2+5x+5\) |
790.2.0.? |
$[ ]$ |
| 25280.k1 |
25280b4 |
25280.k |
25280b |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5 \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$3160$ |
$48$ |
$0$ |
$4.824828517$ |
$1$ |
|
$3$ |
$73728$ |
$1.325214$ |
$1034008400994561/395$ |
$0.97173$ |
$4.64095$ |
$[0, 0, 0, -134828, 19055408]$ |
\(y^2=x^3-134828x+19055408\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 40.24.0-40.z.1.1, 632.24.0.?, $\ldots$ |
$[(293, 2169)]$ |
| 25280.k2 |
25280b3 |
25280.k |
25280b |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5 \cdot 79^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$3160$ |
$48$ |
$0$ |
$4.824828517$ |
$1$ |
|
$3$ |
$73728$ |
$1.325214$ |
$425428681761/194750405$ |
$1.08650$ |
$3.87196$ |
$[0, 0, 0, -10028, 176688]$ |
\(y^2=x^3-10028x+176688\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ |
$[(216, 2844)]$ |
| 25280.k3 |
25280b2 |
25280.k |
25280b |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5^{2} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$3160$ |
$48$ |
$0$ |
$2.412414258$ |
$1$ |
|
$9$ |
$36864$ |
$0.978641$ |
$252555814161/156025$ |
$1.14721$ |
$3.82052$ |
$[0, 0, 0, -8428, 297648]$ |
\(y^2=x^3-8428x+297648\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0.b.1, 40.24.0-20.b.1.1, 316.12.0.?, $\ldots$ |
$[(56, 36)]$ |
| 25280.k4 |
25280b1 |
25280.k |
25280b |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{18} \cdot 5^{4} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$3160$ |
$48$ |
$0$ |
$1.206207129$ |
$1$ |
|
$5$ |
$18432$ |
$0.632067$ |
$-33076161/49375$ |
$0.82927$ |
$3.06440$ |
$[0, 0, 0, -428, 6448]$ |
\(y^2=x^3-428x+6448\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.z.1.11, 158.6.0.?, $\ldots$ |
$[(6, 64)]$ |
| 25280.l1 |
25280a2 |
25280.l |
25280a |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{17} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$3.946868377$ |
$1$ |
|
$3$ |
$8192$ |
$0.584508$ |
$353116962/31205$ |
$0.87093$ |
$3.10382$ |
$[0, 0, 0, -748, -7248]$ |
\(y^2=x^3-748x-7248\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(88, 780)]$ |
| 25280.l2 |
25280a1 |
25280.l |
25280a |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{16} \cdot 5^{2} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1.973434188$ |
$1$ |
|
$5$ |
$4096$ |
$0.237935$ |
$237276/1975$ |
$0.81367$ |
$2.57072$ |
$[0, 0, 0, 52, -528]$ |
\(y^2=x^3+52x-528\) |
2.3.0.a.1, 40.6.0.c.1, 158.6.0.?, 3160.12.0.? |
$[(8, 20)]$ |
| 25280.m1 |
25280q2 |
25280.m |
25280q |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{17} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$3.680027283$ |
$1$ |
|
$3$ |
$8192$ |
$0.584508$ |
$353116962/31205$ |
$0.87093$ |
$3.10382$ |
$[0, 0, 0, -748, 7248]$ |
\(y^2=x^3-748x+7248\) |
2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? |
$[(76, 624)]$ |
| 25280.m2 |
25280q1 |
25280.m |
25280q |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{16} \cdot 5^{2} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3160$ |
$12$ |
$0$ |
$1.840013641$ |
$1$ |
|
$5$ |
$4096$ |
$0.237935$ |
$237276/1975$ |
$0.81367$ |
$2.57072$ |
$[0, 0, 0, 52, 528]$ |
\(y^2=x^3+52x+528\) |
2.3.0.a.1, 40.6.0.c.1, 158.6.0.?, 3160.12.0.? |
$[(-4, 16)]$ |
| 25280.n1 |
25280r4 |
25280.n |
25280r |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5 \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$3160$ |
$48$ |
$0$ |
$22.06901979$ |
$1$ |
|
$1$ |
$73728$ |
$1.325214$ |
$1034008400994561/395$ |
$0.97173$ |
$4.64095$ |
$[0, 0, 0, -134828, -19055408]$ |
\(y^2=x^3-134828x-19055408\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 40.24.0-40.z.1.9, 632.24.0.?, $\ldots$ |
$[(7078826476/1687, 588683977734336/1687)]$ |
| 25280.n2 |
25280r3 |
25280.n |
25280r |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5 \cdot 79^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$3160$ |
$48$ |
$0$ |
$5.517254949$ |
$1$ |
|
$1$ |
$73728$ |
$1.325214$ |
$425428681761/194750405$ |
$1.08650$ |
$3.87196$ |
$[0, 0, 0, -10028, -176688]$ |
\(y^2=x^3-10028x-176688\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ |
$[(-2647/8, 209429/8)]$ |
| 25280.n3 |
25280r2 |
25280.n |
25280r |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5^{2} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$3160$ |
$48$ |
$0$ |
$11.03450989$ |
$1$ |
|
$3$ |
$36864$ |
$0.978641$ |
$252555814161/156025$ |
$1.14721$ |
$3.82052$ |
$[0, 0, 0, -8428, -297648]$ |
\(y^2=x^3-8428x-297648\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0.b.1, 40.24.0-20.b.1.2, 316.12.0.?, $\ldots$ |
$[(121356/7, 42246336/7)]$ |
| 25280.n4 |
25280r1 |
25280.n |
25280r |
$4$ |
$4$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{18} \cdot 5^{4} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$3160$ |
$48$ |
$0$ |
$5.517254949$ |
$1$ |
|
$3$ |
$18432$ |
$0.632067$ |
$-33076161/49375$ |
$0.82927$ |
$3.06440$ |
$[0, 0, 0, -428, -6448]$ |
\(y^2=x^3-428x-6448\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 40.24.0-40.z.1.3, 158.6.0.?, $\ldots$ |
$[(2476, 123200)]$ |
| 25280.o1 |
25280k2 |
25280.o |
25280k |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{14} \cdot 5^{6} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.305654938$ |
$1$ |
|
$3$ |
$13824$ |
$0.755587$ |
$42877229904/1234375$ |
$0.90514$ |
$3.37211$ |
$[0, 0, 0, -1852, -29904]$ |
\(y^2=x^3-1852x-29904\) |
2.3.0.a.1, 20.6.0.c.1, 316.6.0.?, 1580.12.0.? |
$[(52, 120)]$ |
| 25280.o2 |
25280k1 |
25280.o |
25280k |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.152827469$ |
$1$ |
|
$3$ |
$6912$ |
$0.409013$ |
$2173353984/780125$ |
$0.90646$ |
$2.80446$ |
$[0, 0, 0, -272, 1064]$ |
\(y^2=x^3-272x+1064\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-2, 40)]$ |
| 25280.p1 |
25280x2 |
25280.p |
25280x |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{14} \cdot 5^{6} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$0.828626443$ |
$1$ |
|
$7$ |
$13824$ |
$0.755587$ |
$42877229904/1234375$ |
$0.90514$ |
$3.37211$ |
$[0, 0, 0, -1852, 29904]$ |
\(y^2=x^3-1852x+29904\) |
2.3.0.a.1, 20.6.0.c.1, 316.6.0.?, 1580.12.0.? |
$[(38, 120)]$ |
| 25280.p2 |
25280x1 |
25280.p |
25280x |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.657252887$ |
$1$ |
|
$3$ |
$6912$ |
$0.409013$ |
$2173353984/780125$ |
$0.90646$ |
$2.80446$ |
$[0, 0, 0, -272, -1064]$ |
\(y^2=x^3-272x-1064\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(22, 60)]$ |
| 25280.q1 |
25280m1 |
25280.q |
25280m |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5 \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4608$ |
$0.064193$ |
$-7023616/395$ |
$0.70625$ |
$2.52142$ |
$[0, 1, 0, -101, -445]$ |
\(y^2=x^3+x^2-101x-445\) |
790.2.0.? |
$[ ]$ |
| 25280.r1 |
25280c1 |
25280.r |
25280c |
$2$ |
$5$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5^{5} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3160$ |
$48$ |
$1$ |
$2.937613159$ |
$1$ |
|
$2$ |
$5440$ |
$0.178748$ |
$-14102327296/246875$ |
$0.85864$ |
$2.71838$ |
$[0, 1, 0, -201, 1049]$ |
\(y^2=x^3+x^2-201x+1049\) |
5.12.0.a.1, 40.24.0-5.a.1.3, 790.24.1.?, 3160.48.1.? |
$[(-8, 47)]$ |
| 25280.r2 |
25280c2 |
25280.r |
25280c |
$2$ |
$5$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5 \cdot 79^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3160$ |
$48$ |
$1$ |
$14.68806579$ |
$1$ |
|
$0$ |
$27200$ |
$0.983467$ |
$2976041775104/15385281995$ |
$0.95926$ |
$3.44766$ |
$[0, 1, 0, 1199, -44591]$ |
\(y^2=x^3+x^2+1199x-44591\) |
5.12.0.a.2, 40.24.0-5.a.2.3, 790.24.1.?, 3160.48.1.? |
$[(2050752/119, 3008424833/119)]$ |
| 25280.s1 |
25280y1 |
25280.s |
25280y |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5 \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$2.973556299$ |
$1$ |
|
$2$ |
$2176$ |
$-0.471068$ |
$175616/395$ |
$0.65291$ |
$1.70600$ |
$[0, 1, 0, 5, -5]$ |
\(y^2=x^3+x^2+5x-5\) |
790.2.0.? |
$[(18, 79)]$ |
| 25280.t1 |
25280l1 |
25280.t |
25280l |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{6} \cdot 5 \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$18.87093760$ |
$1$ |
|
$0$ |
$47232$ |
$1.344297$ |
$-5058897720777362944/2465195$ |
$0.98500$ |
$4.65848$ |
$[0, 1, 0, -143055, -20873605]$ |
\(y^2=x^3+x^2-143055x-20873605\) |
790.2.0.? |
$[(1935636202/2087, 17048699081473/2087)]$ |
| 25280.u1 |
25280u2 |
25280.u |
25280u |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{15} \cdot 5^{2} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$632$ |
$12$ |
$0$ |
$1.124108525$ |
$1$ |
|
$3$ |
$20480$ |
$0.620321$ |
$2998442888/156025$ |
$0.81662$ |
$3.17807$ |
$[0, -1, 0, -961, 11265]$ |
\(y^2=x^3-x^2-961x+11265\) |
2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? |
$[(33, 120)]$ |
| 25280.u2 |
25280u1 |
25280.u |
25280u |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{12} \cdot 5^{4} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$632$ |
$12$ |
$0$ |
$2.248217050$ |
$1$ |
|
$3$ |
$10240$ |
$0.273748$ |
$1560896/49375$ |
$0.87592$ |
$2.62003$ |
$[0, -1, 0, 39, 665]$ |
\(y^2=x^3-x^2+39x+665\) |
2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? |
$[(11, 48)]$ |
| 25280.v1 |
25280e2 |
25280.v |
25280e |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{22} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$6.869586810$ |
$1$ |
|
$1$ |
$49152$ |
$1.195436$ |
$8490912541201/499280$ |
$0.91378$ |
$4.16725$ |
$[0, -1, 0, -27201, 1735745]$ |
\(y^2=x^3-x^2-27201x+1735745\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(2299/3, 91124/3)]$ |
| 25280.v2 |
25280e1 |
25280.v |
25280e |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{26} \cdot 5^{2} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$3.434793405$ |
$1$ |
|
$3$ |
$24576$ |
$0.848864$ |
$-1732323601/505600$ |
$0.84355$ |
$3.36935$ |
$[0, -1, 0, -1601, 30785]$ |
\(y^2=x^3-x^2-1601x+30785\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(-29, 228)]$ |
| 25280.w1 |
25280h1 |
25280.w |
25280h |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 5^{5} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$23040$ |
$0.850442$ |
$7234852182016/19503125$ |
$0.91477$ |
$3.60448$ |
$[0, -1, 0, -4061, -98035]$ |
\(y^2=x^3-x^2-4061x-98035\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
| 25280.w2 |
25280h2 |
25280.w |
25280h |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5^{10} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$46080$ |
$1.197016$ |
$-103123846096/771484375$ |
$0.90364$ |
$3.71848$ |
$[0, -1, 0, -2481, -176719]$ |
\(y^2=x^3-x^2-2481x-176719\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[ ]$ |
| 25280.x1 |
25280t2 |
25280.x |
25280t |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{18} \cdot 5^{3} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$8.025393031$ |
$1$ |
|
$1$ |
$73728$ |
$1.281128$ |
$32525910642961/780125$ |
$0.92329$ |
$4.29973$ |
$[0, -1, 0, -42561, 3393761]$ |
\(y^2=x^3-x^2-42561x+3393761\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(12343/9, 474344/9)]$ |
| 25280.x2 |
25280t1 |
25280.x |
25280t |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{18} \cdot 5^{6} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$4.012696515$ |
$1$ |
|
$3$ |
$36864$ |
$0.934554$ |
$-7088952961/1234375$ |
$0.85603$ |
$3.49401$ |
$[0, -1, 0, -2561, 57761]$ |
\(y^2=x^3-x^2-2561x+57761\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(103, 936)]$ |
| 25280.y1 |
25280d2 |
25280.y |
25280d |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{16} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$5.914266402$ |
$1$ |
|
$1$ |
$10240$ |
$0.476878$ |
$55990084/31205$ |
$0.82963$ |
$2.85379$ |
$[0, -1, 0, -321, -319]$ |
\(y^2=x^3-x^2-321x-319\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(667/3, 16588/3)]$ |
| 25280.y2 |
25280d1 |
25280.y |
25280d |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5^{2} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.957133201$ |
$1$ |
|
$3$ |
$5120$ |
$0.130304$ |
$3286064/1975$ |
$0.75109$ |
$2.43735$ |
$[0, -1, 0, 79, -79]$ |
\(y^2=x^3-x^2+79x-79\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[(73, 624)]$ |
| 25280.z1 |
25280p1 |
25280.z |
25280p |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( - 2^{14} \cdot 5^{3} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$0.254939$ |
$221184/9875$ |
$0.85839$ |
$2.59855$ |
$[0, 0, 0, 32, 608]$ |
\(y^2=x^3+32x+608\) |
790.2.0.? |
$[ ]$ |