Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
25280.a1 25280.a \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 32, -608]$ \(y^2=x^3+32x-608\) 790.2.0.? $[ ]$
25280.b1 25280.b \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $2.483162001$ $[0, 1, 0, -321, 319]$ \(y^2=x^3+x^2-321x+319\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(17, 8)]$
25280.b2 25280.b \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.241581000$ $[0, 1, 0, 79, 79]$ \(y^2=x^3+x^2+79x+79\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(7, 32)]$
25280.c1 25280.c \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $7.209545072$ $[0, 1, 0, -27201, -1735745]$ \(y^2=x^3+x^2-27201x-1735745\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(2609, 133016)]$
25280.c2 25280.c \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $3.604772536$ $[0, 1, 0, -1601, -30785]$ \(y^2=x^3+x^2-1601x-30785\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(49, 104)]$
25280.d1 25280.d \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4061, 98035]$ \(y^2=x^3+x^2-4061x+98035\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[ ]$
25280.d2 25280.d \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2481, 176719]$ \(y^2=x^3+x^2-2481x+176719\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[ ]$
25280.e1 25280.e \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $10.72852644$ $[0, 1, 0, -42561, -3393761]$ \(y^2=x^3+x^2-42561x-3393761\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(71093/13, 16042844/13)]$
25280.e2 25280.e \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $5.364263224$ $[0, 1, 0, -2561, -57761]$ \(y^2=x^3+x^2-2561x-57761\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(397, 7852)]$
25280.f1 25280.f \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -961, -11265]$ \(y^2=x^3+x^2-961x-11265\) 2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? $[ ]$
25280.f2 25280.f \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 39, -665]$ \(y^2=x^3+x^2+39x-665\) 2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? $[ ]$
25280.g1 25280.g \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\mathsf{trivial}$ $3.253691767$ $[0, -1, 0, -201, -1049]$ \(y^2=x^3-x^2-201x-1049\) 5.12.0.a.1, 40.24.0-5.a.1.1, 790.24.1.?, 3160.48.1.? $[(18, 29)]$
25280.g2 25280.g \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\mathsf{trivial}$ $0.650738353$ $[0, -1, 0, 1199, 44591]$ \(y^2=x^3-x^2+1199x+44591\) 5.12.0.a.2, 40.24.0-5.a.2.1, 790.24.1.?, 3160.48.1.? $[(338, 6241)]$
25280.h1 25280.h \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -101, 445]$ \(y^2=x^3-x^2-101x+445\) 790.2.0.? $[ ]$
25280.i1 25280.i \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -143055, 20873605]$ \(y^2=x^3-x^2-143055x+20873605\) 790.2.0.? $[ ]$
25280.j1 25280.j \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 5, 5]$ \(y^2=x^3-x^2+5x+5\) 790.2.0.? $[ ]$
25280.k1 25280.k \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $4.824828517$ $[0, 0, 0, -134828, 19055408]$ \(y^2=x^3-134828x+19055408\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 40.24.0-40.z.1.1, 632.24.0.?, $\ldots$ $[(293, 2169)]$
25280.k2 25280.k \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $4.824828517$ $[0, 0, 0, -10028, 176688]$ \(y^2=x^3-10028x+176688\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ $[(216, 2844)]$
25280.k3 25280.k \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.412414258$ $[0, 0, 0, -8428, 297648]$ \(y^2=x^3-8428x+297648\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0.b.1, 40.24.0-20.b.1.1, 316.12.0.?, $\ldots$ $[(56, 36)]$
25280.k4 25280.k \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.206207129$ $[0, 0, 0, -428, 6448]$ \(y^2=x^3-428x+6448\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.z.1.11, 158.6.0.?, $\ldots$ $[(6, 64)]$
25280.l1 25280.l \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $3.946868377$ $[0, 0, 0, -748, -7248]$ \(y^2=x^3-748x-7248\) 2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? $[(88, 780)]$
25280.l2 25280.l \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.973434188$ $[0, 0, 0, 52, -528]$ \(y^2=x^3+52x-528\) 2.3.0.a.1, 40.6.0.c.1, 158.6.0.?, 3160.12.0.? $[(8, 20)]$
25280.m1 25280.m \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $3.680027283$ $[0, 0, 0, -748, 7248]$ \(y^2=x^3-748x+7248\) 2.3.0.a.1, 40.6.0.b.1, 316.6.0.?, 3160.12.0.? $[(76, 624)]$
25280.m2 25280.m \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.840013641$ $[0, 0, 0, 52, 528]$ \(y^2=x^3+52x+528\) 2.3.0.a.1, 40.6.0.c.1, 158.6.0.?, 3160.12.0.? $[(-4, 16)]$
25280.n1 25280.n \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $22.06901979$ $[0, 0, 0, -134828, -19055408]$ \(y^2=x^3-134828x-19055408\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 40.24.0-40.z.1.9, 632.24.0.?, $\ldots$ $[(7078826476/1687, 588683977734336/1687)]$
25280.n2 25280.n \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $5.517254949$ $[0, 0, 0, -10028, -176688]$ \(y^2=x^3-10028x-176688\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ $[(-2647/8, 209429/8)]$
25280.n3 25280.n \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.03450989$ $[0, 0, 0, -8428, -297648]$ \(y^2=x^3-8428x-297648\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0.b.1, 40.24.0-20.b.1.2, 316.12.0.?, $\ldots$ $[(121356/7, 42246336/7)]$
25280.n4 25280.n \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $5.517254949$ $[0, 0, 0, -428, -6448]$ \(y^2=x^3-428x-6448\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 40.24.0-40.z.1.3, 158.6.0.?, $\ldots$ $[(2476, 123200)]$
25280.o1 25280.o \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $2.305654938$ $[0, 0, 0, -1852, -29904]$ \(y^2=x^3-1852x-29904\) 2.3.0.a.1, 20.6.0.c.1, 316.6.0.?, 1580.12.0.? $[(52, 120)]$
25280.o2 25280.o \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.152827469$ $[0, 0, 0, -272, 1064]$ \(y^2=x^3-272x+1064\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(-2, 40)]$
25280.p1 25280.p \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $0.828626443$ $[0, 0, 0, -1852, 29904]$ \(y^2=x^3-1852x+29904\) 2.3.0.a.1, 20.6.0.c.1, 316.6.0.?, 1580.12.0.? $[(38, 120)]$
25280.p2 25280.p \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.657252887$ $[0, 0, 0, -272, -1064]$ \(y^2=x^3-272x-1064\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(22, 60)]$
25280.q1 25280.q \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -101, -445]$ \(y^2=x^3+x^2-101x-445\) 790.2.0.? $[ ]$
25280.r1 25280.r \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\mathsf{trivial}$ $2.937613159$ $[0, 1, 0, -201, 1049]$ \(y^2=x^3+x^2-201x+1049\) 5.12.0.a.1, 40.24.0-5.a.1.3, 790.24.1.?, 3160.48.1.? $[(-8, 47)]$
25280.r2 25280.r \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\mathsf{trivial}$ $14.68806579$ $[0, 1, 0, 1199, -44591]$ \(y^2=x^3+x^2+1199x-44591\) 5.12.0.a.2, 40.24.0-5.a.2.3, 790.24.1.?, 3160.48.1.? $[(2050752/119, 3008424833/119)]$
25280.s1 25280.s \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\mathsf{trivial}$ $2.973556299$ $[0, 1, 0, 5, -5]$ \(y^2=x^3+x^2+5x-5\) 790.2.0.? $[(18, 79)]$
25280.t1 25280.t \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\mathsf{trivial}$ $18.87093760$ $[0, 1, 0, -143055, -20873605]$ \(y^2=x^3+x^2-143055x-20873605\) 790.2.0.? $[(1935636202/2087, 17048699081473/2087)]$
25280.u1 25280.u \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $1.124108525$ $[0, -1, 0, -961, 11265]$ \(y^2=x^3-x^2-961x+11265\) 2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? $[(33, 120)]$
25280.u2 25280.u \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $2.248217050$ $[0, -1, 0, 39, 665]$ \(y^2=x^3-x^2+39x+665\) 2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? $[(11, 48)]$
25280.v1 25280.v \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $6.869586810$ $[0, -1, 0, -27201, 1735745]$ \(y^2=x^3-x^2-27201x+1735745\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(2299/3, 91124/3)]$
25280.v2 25280.v \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $3.434793405$ $[0, -1, 0, -1601, 30785]$ \(y^2=x^3-x^2-1601x+30785\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(-29, 228)]$
25280.w1 25280.w \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4061, -98035]$ \(y^2=x^3-x^2-4061x-98035\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[ ]$
25280.w2 25280.w \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2481, -176719]$ \(y^2=x^3-x^2-2481x-176719\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[ ]$
25280.x1 25280.x \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $8.025393031$ $[0, -1, 0, -42561, 3393761]$ \(y^2=x^3-x^2-42561x+3393761\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(12343/9, 474344/9)]$
25280.x2 25280.x \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $4.012696515$ $[0, -1, 0, -2561, 57761]$ \(y^2=x^3-x^2-2561x+57761\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(103, 936)]$
25280.y1 25280.y \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $5.914266402$ $[0, -1, 0, -321, -319]$ \(y^2=x^3-x^2-321x-319\) 2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? $[(667/3, 16588/3)]$
25280.y2 25280.y \( 2^{6} \cdot 5 \cdot 79 \) $1$ $\Z/2\Z$ $2.957133201$ $[0, -1, 0, 79, -79]$ \(y^2=x^3-x^2+79x-79\) 2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? $[(73, 624)]$
25280.z1 25280.z \( 2^{6} \cdot 5 \cdot 79 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 32, 608]$ \(y^2=x^3+32x+608\) 790.2.0.? $[ ]$
  displayed columns for results