Learn more

Refine search


Results (17 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
248004.a1 248004.a \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\mathsf{trivial}$ $2.171286338$ $[0, 0, 0, -1992, 34445]$ \(y^2=x^3-1992x+34445\) 4.4.0.a.1, 166.2.0.?, 332.8.0.? $[(83, 664)]$
248004.b1 248004.b \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -764679, 618673534]$ \(y^2=x^3-764679x+618673534\) 3.4.0.a.1, 12.8.0-3.a.1.3, 249.8.0.?, 996.16.0.? $[ ]$
248004.b2 248004.b \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 6675441, -14078539514]$ \(y^2=x^3+6675441x-14078539514\) 3.4.0.a.1, 12.8.0-3.a.1.4, 249.8.0.?, 996.16.0.? $[ ]$
248004.c1 248004.c \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $2$ $\mathsf{trivial}$ $1.731528522$ $[0, 0, 0, 249, 830]$ \(y^2=x^3+249x+830\) 4.2.0.a.1, 1992.4.0.? $[(7, 54), (-2, 18)]$
248004.d1 248004.d \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 10147497, -136143628274]$ \(y^2=x^3+10147497x-136143628274\) 996.2.0.? $[ ]$
248004.e1 248004.e \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\Z/2\Z$ $-12$ $2.218505006$ $[0, 0, 0, -930015, 339641478]$ \(y^2=x^3-930015x+339641478\) $[(166, 13778)]$
248004.e2 248004.e \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\Z/2\Z$ $-12$ $6.655515019$ $[0, 0, 0, -103335, -12579314]$ \(y^2=x^3-103335x-12579314\) $[(-81506/21, 4202290/21)]$
248004.e3 248004.e \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\Z/2\Z$ $-3$ $13.31103003$ $[0, 0, 0, 0, -571787]$ \(y^2=x^3-571787\) $[(838043/61, 747738180/61)]$
248004.e4 248004.e \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\Z/2\Z$ $-3$ $4.437010012$ $[0, 0, 0, 0, 15438249]$ \(y^2=x^3+15438249\) $[(183, 4644)]$
248004.f1 248004.f \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\mathsf{trivial}$ $-3$ $70.78904309$ $[0, 0, 0, 0, -5125498668]$ \(y^2=x^3-5125498668\) $[(16701073636171432306885047026157/97846995026599, 12662719290284918701835317878392896237047895395/97846995026599)]$
248004.f2 248004.f \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\Z/3\Z$ $-3$ $23.59634769$ $[0, 0, 0, 0, 189833284]$ \(y^2=x^3+189833284\) $[(58147077716/6731, 14637429798987270/6731)]$
248004.g1 248004.g \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\mathsf{trivial}$ $-3$ $6.128407707$ $[0, 0, 0, 0, -332]$ \(y^2=x^3-332\) $[(557/7, 11565/7)]$
248004.g2 248004.g \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\mathsf{trivial}$ $-3$ $2.042802569$ $[0, 0, 0, 0, 8964]$ \(y^2=x^3+8964\) $[(21, 135)]$
248004.h1 248004.h \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1715361, -474583210]$ \(y^2=x^3+1715361x-474583210\) 4.2.0.a.1, 24.4.0-4.a.1.1 $[ ]$
248004.i1 248004.i \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $1$ $\mathsf{trivial}$ $41.02425217$ $[0, 0, 0, -13722888, -19695203215]$ \(y^2=x^3-13722888x-19695203215\) 4.4.0.a.1, 166.2.0.?, 332.8.0.? $[(535751977269700493930/342417583, 4577968465589037431870504584045/342417583)]$
248004.j1 248004.j \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7212783, -5414822890]$ \(y^2=x^3-7212783x-5414822890\) 2.3.0.a.1, 12.6.0.a.1, 332.6.0.?, 996.12.0.? $[ ]$
248004.j2 248004.j \( 2^{2} \cdot 3^{2} \cdot 83^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1157352, -551774455]$ \(y^2=x^3+1157352x-551774455\) 2.3.0.a.1, 12.6.0.b.1, 166.6.0.?, 996.12.0.? $[ ]$
  displayed columns for results