Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
244608.a1 |
244608a1 |
244608.a |
244608a |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{6} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.959249993$ |
$1$ |
|
$2$ |
$2386944$ |
$1.760166$ |
$-5138863744/9477$ |
$0.95900$ |
$3.83921$ |
$[0, -1, 0, -163725, 25594101]$ |
\(y^2=x^3-x^2-163725x+25594101\) |
52.2.0.a.1 |
$[(231, 216)]$ |
244608.b1 |
244608b2 |
244608.b |
244608b |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 3^{2} \cdot 7^{3} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$168$ |
$12$ |
$0$ |
$1.727374594$ |
$1$ |
|
$15$ |
$344064$ |
$0.883797$ |
$5075433088/1521$ |
$0.89796$ |
$3.05378$ |
$[0, -1, 0, -6365, 197541]$ |
\(y^2=x^3-x^2-6365x+197541\) |
2.3.0.a.1, 24.6.0.i.1, 28.6.0.a.1, 168.12.0.? |
$[(55, 104), (-49, 624)]$ |
244608.b2 |
244608b1 |
244608.b |
244608b |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{7} \cdot 3 \cdot 7^{3} \cdot 13^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$168$ |
$12$ |
$0$ |
$6.909498379$ |
$1$ |
|
$5$ |
$172032$ |
$0.537223$ |
$230049824/85683$ |
$1.01383$ |
$2.41336$ |
$[0, -1, 0, -450, 2346]$ |
\(y^2=x^3-x^2-450x+2346\) |
2.3.0.a.1, 24.6.0.i.1, 28.6.0.b.1, 168.12.0.? |
$[(5, 14), (89, 812)]$ |
244608.c1 |
244608c2 |
244608.c |
244608c |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{13} \cdot 3 \cdot 7^{9} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$168$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2408448$ |
$1.856752$ |
$230049824/85683$ |
$1.01383$ |
$3.68956$ |
$[0, -1, 0, -88265, -5996199]$ |
\(y^2=x^3-x^2-88265x-5996199\) |
2.3.0.a.1, 24.6.0.i.1, 28.6.0.b.1, 168.12.0.? |
$[ ]$ |
244608.c2 |
244608c1 |
244608.c |
244608c |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{2} \cdot 7^{9} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$168$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1204224$ |
$1.510178$ |
$5075433088/1521$ |
$0.89796$ |
$3.65959$ |
$[0, -1, 0, -77975, -8352609]$ |
\(y^2=x^3-x^2-77975x-8352609\) |
2.3.0.a.1, 24.6.0.i.1, 28.6.0.a.1, 168.12.0.? |
$[ ]$ |
244608.d1 |
244608d1 |
244608.d |
244608d |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{6} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$2.271263187$ |
$1$ |
|
$2$ |
$170496$ |
$0.440638$ |
$-5138863744/9477$ |
$0.95900$ |
$2.56301$ |
$[0, -1, 0, -835, -9029]$ |
\(y^2=x^3-x^2-835x-9029\) |
52.2.0.a.1 |
$[(34, 27)]$ |
244608.e1 |
244608e1 |
244608.e |
244608e |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{31} \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$41.80431002$ |
$1$ |
|
$0$ |
$353310720$ |
$4.368591$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$6.10367$ |
$[0, -1, 0, -98208217, -32226835018391]$ |
\(y^2=x^3-x^2-98208217x-32226835018391\) |
2184.2.0.? |
$[(33224900335030667927/29387507, 116119456768629214675362480312/29387507)]$ |
244608.f1 |
244608f1 |
244608.f |
244608f |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 7^{11} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$3.172489490$ |
$1$ |
|
$6$ |
$5806080$ |
$2.198696$ |
$-514722176765024/80754929073$ |
$0.96491$ |
$4.08159$ |
$[0, -1, 0, -412302, 115022286]$ |
\(y^2=x^3-x^2-412302x+115022286\) |
2184.2.0.? |
$[(1301/2, 31213/2), (-275, 14406)]$ |
244608.g1 |
244608g1 |
244608.g |
244608g |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$3.033011923$ |
$1$ |
|
$0$ |
$134400$ |
$0.484016$ |
$377475616/369603$ |
$0.98337$ |
$2.29644$ |
$[0, -1, 0, 278, -1574]$ |
\(y^2=x^3-x^2+278x-1574\) |
24.2.0.b.1 |
$[(21/2, 13/2)]$ |
244608.h1 |
244608h1 |
244608.h |
244608h |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{13} \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15724800$ |
$2.906582$ |
$-57108497046032096/7695492605307$ |
$1.00867$ |
$4.77234$ |
$[0, -1, 0, -7249762, 8344781614]$ |
\(y^2=x^3-x^2-7249762x+8344781614\) |
24.2.0.b.1 |
$[ ]$ |
244608.i1 |
244608i1 |
244608.i |
244608i |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{13} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4492800$ |
$2.280201$ |
$-57108497046032096/7695492605307$ |
$1.00867$ |
$4.16652$ |
$[0, -1, 0, -591817, -194376839]$ |
\(y^2=x^3-x^2-591817x-194376839\) |
24.2.0.b.1 |
$[ ]$ |
244608.j1 |
244608j1 |
244608.j |
244608j |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$2.793666932$ |
$1$ |
|
$0$ |
$141312$ |
$0.583102$ |
$-2544224/273$ |
$0.72535$ |
$2.53453$ |
$[0, -1, 0, -702, -7566]$ |
\(y^2=x^3-x^2-702x-7566\) |
2184.2.0.? |
$[(125/2, 49/2)]$ |
244608.k1 |
244608k1 |
244608.k |
244608k |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{7} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1881600$ |
$1.803545$ |
$377475616/369603$ |
$0.98337$ |
$3.57264$ |
$[0, -1, 0, 54423, 4046841]$ |
\(y^2=x^3-x^2+54423x+4046841\) |
24.2.0.b.1 |
$[ ]$ |
244608.l1 |
244608l1 |
244608.l |
244608l |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{31} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$30.04586765$ |
$1$ |
|
$0$ |
$25236480$ |
$3.049065$ |
$-316880045595872672/1357028451635831559$ |
$1.13004$ |
$4.82747$ |
$[0, -1, 0, -501062, 11744652354]$ |
\(y^2=x^3-x^2-501062x+11744652354\) |
2184.2.0.? |
$[(20674872512293/72014, 100969086880545606821/72014)]$ |
244608.m1 |
244608m2 |
244608.m |
244608m |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{13} \cdot 3^{4} \cdot 7^{3} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$728$ |
$12$ |
$0$ |
$1.091701415$ |
$1$ |
|
$19$ |
$327680$ |
$0.932178$ |
$9241752992/13689$ |
$0.90347$ |
$3.04621$ |
$[0, -1, 0, -6169, 188329]$ |
\(y^2=x^3-x^2-6169x+188329\) |
2.3.0.a.1, 56.6.0.a.1, 104.6.0.?, 364.6.0.?, 728.12.0.? |
$[(49, 36), (40, 63)]$ |
244608.m2 |
244608m1 |
244608.m |
244608m |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{8} \cdot 7^{3} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$728$ |
$12$ |
$0$ |
$4.366805660$ |
$1$ |
|
$9$ |
$163840$ |
$0.585605$ |
$156805504/85293$ |
$0.92223$ |
$2.43833$ |
$[0, -1, 0, -499, 1219]$ |
\(y^2=x^3-x^2-499x+1219\) |
2.3.0.a.1, 56.6.0.d.1, 104.6.0.?, 364.6.0.?, 728.12.0.? |
$[(-9, 70), (33, 140)]$ |
244608.n1 |
244608n1 |
244608.n |
244608n |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.256228027$ |
$1$ |
|
$2$ |
$239616$ |
$0.741378$ |
$43019648/85293$ |
$0.89331$ |
$2.56236$ |
$[0, -1, 0, 621, -9477]$ |
\(y^2=x^3-x^2+621x-9477\) |
52.2.0.a.1 |
$[(27, 162)]$ |
244608.o1 |
244608o2 |
244608.o |
244608o |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 3^{8} \cdot 7^{9} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$4.744154013$ |
$1$ |
|
$3$ |
$2752512$ |
$2.120350$ |
$2172747904/1108809$ |
$0.93828$ |
$3.92640$ |
$[0, -1, 0, -235069, -15000635]$ |
\(y^2=x^3-x^2-235069x-15000635\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.a.1, 56.12.0.bf.1 |
$[(10303, 1044576)]$ |
244608.o2 |
244608o1 |
244608.o |
244608o |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{4} \cdot 7^{9} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$9.488308027$ |
$1$ |
|
$1$ |
$1376256$ |
$1.773775$ |
$3516871648/2313441$ |
$0.94330$ |
$3.57416$ |
$[0, -1, 0, 54766, -1842126]$ |
\(y^2=x^3-x^2+54766x-1842126\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.b.1, 56.12.0.bg.1 |
$[(164521/8, 66991093/8)]$ |
244608.p1 |
244608p1 |
244608.p |
244608p |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3 \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$3.208081478$ |
$1$ |
|
$1$ |
$208896$ |
$0.829623$ |
$45812608/1911$ |
$0.78068$ |
$2.80967$ |
$[0, -1, 0, -2319, -40641]$ |
\(y^2=x^3-x^2-2319x-40641\) |
2.3.0.a.1, 56.6.0.c.1, 156.6.0.?, 2184.12.0.? |
$[(349/2, 5145/2)]$ |
244608.p2 |
244608p2 |
244608.p |
244608p |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{2} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1.604040739$ |
$1$ |
|
$5$ |
$417792$ |
$1.176197$ |
$157216/10647$ |
$0.84136$ |
$3.01477$ |
$[0, -1, 0, 1111, -153831]$ |
\(y^2=x^3-x^2+1111x-153831\) |
2.3.0.a.1, 56.6.0.b.1, 156.6.0.?, 2184.12.0.? |
$[(75, 588)]$ |
244608.q1 |
244608q1 |
244608.q |
244608q |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{5} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2088960$ |
$1.927912$ |
$1725820338099328/2012283$ |
$0.97119$ |
$4.21563$ |
$[0, -1, 0, -777499, 264133843]$ |
\(y^2=x^3-x^2-777499x+264133843\) |
2.3.0.a.1, 12.6.0.a.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.q2 |
244608q2 |
244608.q |
244608q |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{10} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4177920$ |
$2.274487$ |
$-52617135316064/1843096437$ |
$0.94676$ |
$4.21838$ |
$[0, -1, 0, -771129, 268668009]$ |
\(y^2=x^3-x^2-771129x+268668009\) |
2.3.0.a.1, 12.6.0.b.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.r1 |
244608r2 |
244608.r |
244608r |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 3 \cdot 7^{10} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6193152$ |
$2.528679$ |
$232943314602112/34767505227$ |
$0.96330$ |
$4.38942$ |
$[0, -1, 0, -1595309, 668635605]$ |
\(y^2=x^3-x^2-1595309x+668635605\) |
2.3.0.a.1, 12.6.0.a.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.r2 |
244608r1 |
244608.r |
244608r |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{2} \cdot 7^{14} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3096576$ |
$2.182102$ |
$35716024483744/113987410173$ |
$0.97596$ |
$3.96872$ |
$[0, -1, 0, 169426, 56978454]$ |
\(y^2=x^3-x^2+169426x+56978454\) |
2.3.0.a.1, 12.6.0.b.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.s1 |
244608s1 |
244608.s |
244608s |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3 \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$368640$ |
$1.102278$ |
$2840069248/24843$ |
$0.84910$ |
$3.14229$ |
$[0, -1, 0, -9179, -332877]$ |
\(y^2=x^3-x^2-9179x-332877\) |
2.3.0.a.1, 12.6.0.a.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.s2 |
244608s2 |
244608.s |
244608s |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{2} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.448853$ |
$-2544224/280917$ |
$0.90216$ |
$3.27966$ |
$[0, -1, 0, -2809, -792791]$ |
\(y^2=x^3-x^2-2809x-792791\) |
2.3.0.a.1, 12.6.0.b.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.t1 |
244608t2 |
244608.t |
244608t |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 3^{2} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$2.055778402$ |
$1$ |
|
$5$ |
$81920$ |
$0.437333$ |
$1557376/117$ |
$0.75116$ |
$2.40181$ |
$[0, -1, 0, -429, -3051]$ |
\(y^2=x^3-x^2-429x-3051\) |
2.3.0.a.1, 168.6.0.?, 312.6.0.?, 364.6.0.?, 2184.12.0.? |
$[(-12, 15)]$ |
244608.t2 |
244608t1 |
244608.t |
244608t |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$4.111556805$ |
$1$ |
|
$1$ |
$40960$ |
$0.090759$ |
$42592/507$ |
$0.79753$ |
$1.96037$ |
$[0, -1, 0, 26, -230]$ |
\(y^2=x^3-x^2+26x-230\) |
2.3.0.a.1, 168.6.0.?, 312.6.0.?, 364.6.0.?, 2184.12.0.? |
$[(45/2, 295/2)]$ |
244608.u1 |
244608u1 |
244608.u |
244608u |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{2} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$286720$ |
$1.063715$ |
$1557376/117$ |
$0.75116$ |
$3.00763$ |
$[0, -1, 0, -5259, 138699]$ |
\(y^2=x^3-x^2-5259x+138699\) |
2.3.0.a.1, 168.6.0.?, 312.6.0.?, 364.6.0.?, 2184.12.0.? |
$[ ]$ |
244608.u2 |
244608u2 |
244608.u |
244608u |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3 \cdot 7^{9} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$573440$ |
$1.410288$ |
$42592/507$ |
$0.79753$ |
$3.23657$ |
$[0, -1, 0, 5031, 605865]$ |
\(y^2=x^3-x^2+5031x+605865\) |
2.3.0.a.1, 168.6.0.?, 312.6.0.?, 364.6.0.?, 2184.12.0.? |
$[ ]$ |
244608.v1 |
244608v1 |
244608.v |
244608v |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{3} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$221184$ |
$0.829231$ |
$8821888/4563$ |
$1.13046$ |
$2.67690$ |
$[0, -1, 0, -1339, 6595]$ |
\(y^2=x^3-x^2-1339x+6595\) |
2.3.0.a.1, 12.6.0.a.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.v2 |
244608v2 |
244608.v |
244608v |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$312$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$442368$ |
$1.175804$ |
$14609056/9477$ |
$0.92836$ |
$2.99688$ |
$[0, -1, 0, 5031, 46089]$ |
\(y^2=x^3-x^2+5031x+46089\) |
2.3.0.a.1, 12.6.0.b.1, 104.6.0.?, 312.12.0.? |
$[ ]$ |
244608.w1 |
244608w1 |
244608.w |
244608w |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{8} \cdot 7^{3} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$2.694838290$ |
$1$ |
|
$13$ |
$196608$ |
$0.800819$ |
$2172747904/1108809$ |
$0.93828$ |
$2.65020$ |
$[0, -1, 0, -1199, 5895]$ |
\(y^2=x^3-x^2-1199x+5895\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.a.1, 56.12.0.bf.1 |
$[(-2, 91), (37, 104)]$ |
244608.w2 |
244608w2 |
244608.w |
244608w |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{4} \cdot 7^{3} \cdot 13^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$2.694838290$ |
$1$ |
|
$17$ |
$393216$ |
$1.147394$ |
$3516871648/2313441$ |
$0.94330$ |
$2.96835$ |
$[0, -1, 0, 4471, 41049]$ |
\(y^2=x^3-x^2+4471x+41049\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.b.1, 56.12.0.bg.1 |
$[(5, 252), (41, 540)]$ |
244608.x1 |
244608x1 |
244608.x |
244608x |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 3^{8} \cdot 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$6.205400309$ |
$1$ |
|
$2$ |
$3354624$ |
$2.060905$ |
$43019648/85293$ |
$0.89331$ |
$3.83856$ |
$[0, -1, 0, 121651, 25396533]$ |
\(y^2=x^3-x^2+121651x+25396533\) |
52.2.0.a.1 |
$[(4244, 277425)]$ |
244608.y1 |
244608y2 |
244608.y |
244608y |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 3^{8} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$728$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2293760$ |
$1.905134$ |
$156805504/85293$ |
$0.92223$ |
$3.71454$ |
$[0, -1, 0, -97869, -2855691]$ |
\(y^2=x^3-x^2-97869x-2855691\) |
2.3.0.a.1, 56.6.0.d.1, 104.6.0.?, 364.6.0.?, 728.12.0.? |
$[ ]$ |
244608.y2 |
244608y1 |
244608.y |
244608y |
$2$ |
$2$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{7} \cdot 3^{4} \cdot 7^{9} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$728$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1146880$ |
$1.558559$ |
$9241752992/13689$ |
$0.90347$ |
$3.65203$ |
$[0, -1, 0, -75574, -7961246]$ |
\(y^2=x^3-x^2-75574x-7961246\) |
2.3.0.a.1, 56.6.0.a.1, 104.6.0.?, 364.6.0.?, 728.12.0.? |
$[ ]$ |
244608.z1 |
244608z1 |
244608.z |
244608z |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$2.981666108$ |
$1$ |
|
$2$ |
$82944$ |
$0.308875$ |
$-1620896/6591$ |
$0.83876$ |
$2.18184$ |
$[0, -1, 0, -86, -846]$ |
\(y^2=x^3-x^2-86x-846\) |
2184.2.0.? |
$[(13, 8)]$ |
244608.ba1 |
244608ba1 |
244608.ba |
244608ba |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{7} \cdot 7^{9} \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$6.669437285$ |
$1$ |
|
$8$ |
$1505280$ |
$1.750216$ |
$18297184/28431$ |
$0.96954$ |
$3.52758$ |
$[0, -1, 0, 37959, -3707703]$ |
\(y^2=x^3-x^2+37959x-3707703\) |
2184.2.0.? |
$[(229, 4116), (1601, 64484)]$ |
244608.bb1 |
244608bb1 |
244608.bb |
244608bb |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$4.348417989$ |
$1$ |
|
$2$ |
$52992$ |
$0.125546$ |
$-204438752/507$ |
$0.83755$ |
$2.24736$ |
$[0, -1, 0, -226, -1238]$ |
\(y^2=x^3-x^2-226x-1238\) |
24.2.0.b.1 |
$[(69, 554)]$ |
244608.bc1 |
244608bc1 |
244608.bc |
244608bc |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3 \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$301056$ |
$1.098032$ |
$-2825582965664/39$ |
$0.95713$ |
$3.50745$ |
$[0, -1, 0, -41561, -3247383]$ |
\(y^2=x^3-x^2-41561x-3247383\) |
2184.2.0.? |
$[ ]$ |
244608.bd1 |
244608bd1 |
244608.bd |
244608bd |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{3} \cdot 7^{19} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$31.37227186$ |
$1$ |
|
$0$ |
$68290560$ |
$3.733398$ |
$-706893608266654253820512/971303706208248777$ |
$1.04623$ |
$5.75825$ |
$[0, -1, 0, -458292606, -3780592024446]$ |
\(y^2=x^3-x^2-458292606x-3780592024446\) |
2184.2.0.? |
$[(286154767616129/58225, 4666565582704964072758/58225)]$ |
244608.be1 |
244608be1 |
244608.be |
244608be |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1053696$ |
$1.724413$ |
$-2825582965664/39$ |
$0.95713$ |
$4.11326$ |
$[0, -1, 0, -509126, 139995234]$ |
\(y^2=x^3-x^2-509126x+139995234\) |
2184.2.0.? |
$[ ]$ |
244608.bf1 |
244608bf1 |
244608.bf |
244608bf |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$107520$ |
$0.430687$ |
$18297184/28431$ |
$0.96954$ |
$2.25138$ |
$[0, -1, 0, 194, 1282]$ |
\(y^2=x^3-x^2+194x+1282\) |
2184.2.0.? |
$[ ]$ |
244608.bg1 |
244608bg1 |
244608.bg |
244608bg |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3 \cdot 7^{9} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.351935335$ |
$1$ |
|
$4$ |
$1161216$ |
$1.628403$ |
$-1620896/6591$ |
$0.83876$ |
$3.45804$ |
$[0, -1, 0, -16921, 2405929]$ |
\(y^2=x^3-x^2-16921x+2405929\) |
2184.2.0.? |
$[(33, 1372)]$ |
244608.bh1 |
244608bh1 |
244608.bh |
244608bh |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3 \cdot 7^{8} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.724285885$ |
$1$ |
|
$12$ |
$741888$ |
$1.445074$ |
$-204438752/507$ |
$0.83755$ |
$3.52356$ |
$[0, -1, 0, -44361, 3618777]$ |
\(y^2=x^3-x^2-44361x+3618777\) |
24.2.0.b.1 |
$[(-163, 2548), (131, 196)]$ |
244608.bi1 |
244608bi1 |
244608.bi |
244608bi |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{3} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$2.194090485$ |
$1$ |
|
$2$ |
$552960$ |
$1.381628$ |
$32969632/120393$ |
$0.84002$ |
$3.19705$ |
$[0, -1, 0, 6599, -477623]$ |
\(y^2=x^3-x^2+6599x-477623\) |
2184.2.0.? |
$[(117, 1372)]$ |
244608.bj1 |
244608bj1 |
244608.bj |
244608bj |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{5} \cdot 7^{7} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3225600$ |
$2.207809$ |
$-360191686800992/106735227417$ |
$0.96554$ |
$4.06681$ |
$[0, -1, 0, -366046, -104696066]$ |
\(y^2=x^3-x^2-366046x-104696066\) |
2184.2.0.? |
$[ ]$ |
244608.bk1 |
244608bk1 |
244608.bk |
244608bk |
$1$ |
$1$ |
\( 2^{7} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{9} \cdot 7^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$7.918021470$ |
$1$ |
|
$0$ |
$1880064$ |
$1.937368$ |
$-12038741902688/1791153$ |
$0.93476$ |
$4.09479$ |
$[0, -1, 0, -471641, -124529943]$ |
\(y^2=x^3-x^2-471641x-124529943\) |
2184.2.0.? |
$[(50809/3, 11362708/3)]$ |