The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 236.a1 |
236a1 |
236.a |
236a |
$1$ |
$1$ |
\( 2^{2} \cdot 59 \) |
\( - 2^{4} \cdot 59 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$118$ |
$2$ |
$0$ |
$0.095116125$ |
$1$ |
|
$8$ |
$6$ |
$-0.743309$ |
$-16384/59$ |
$0.78110$ |
$2.64537$ |
$[0, -1, 0, -1, 2]$ |
\(y^2=x^3-x^2-x+2\) |
118.2.0.? |
$[(1, 1)]$ |
$1$ |
| 236.b1 |
236b1 |
236.b |
236b |
$2$ |
$3$ |
\( 2^{2} \cdot 59 \) |
\( - 2^{4} \cdot 59 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$354$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$14$ |
$-0.612070$ |
$-5619712/59$ |
$0.84353$ |
$3.35522$ |
$[0, 1, 0, -9, 8]$ |
\(y^2=x^3+x^2-9x+8\) |
3.8.0-3.a.1.2, 118.2.0.?, 354.16.0.? |
$[ ]$ |
$1$ |
| 236.b2 |
236b2 |
236.b |
236b |
$2$ |
$3$ |
\( 2^{2} \cdot 59 \) |
\( - 2^{4} \cdot 59^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$354$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42$ |
$-0.062763$ |
$199344128/205379$ |
$0.94937$ |
$4.00509$ |
$[0, 1, 0, 31, 68]$ |
\(y^2=x^3+x^2+31x+68\) |
3.8.0-3.a.1.1, 118.2.0.?, 354.16.0.? |
$[ ]$ |
$1$ |
Download
displayed columns for
results