| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 232845.a1 |
232845a1 |
232845.a |
232845a |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{9} \cdot 19^{2} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$2.438477537$ |
$1$ |
|
$0$ |
$1752192$ |
$1.730064$ |
$3212716834443833344/292517578125$ |
$1.04383$ |
$3.92475$ |
$[0, -1, 1, -218886, -39340258]$ |
\(y^2+y=x^3-x^2-218886x-39340258\) |
10.2.0.a.1 |
$[(-1083/2, 383/2)]$ |
| 232845.b1 |
232845b1 |
232845.b |
232845b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{10} \cdot 5^{14} \cdot 19^{10} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1195084800$ |
$4.888557$ |
$-5849020933249476332032897024/3734327290213641357421875$ |
$1.02740$ |
$6.66332$ |
$[0, -1, 1, -13550657126, -880504557300784]$ |
\(y^2+y=x^3-x^2-13550657126x-880504557300784\) |
86.2.0.? |
$[ ]$ |
| 232845.c1 |
232845c1 |
232845.c |
232845c |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{14} \cdot 5^{2} \cdot 19^{6} \cdot 43^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18579456$ |
$2.758495$ |
$-522547125460258816/9506987907075$ |
$1.00952$ |
$4.73333$ |
$[0, 1, 1, -6057700, -5830179044]$ |
\(y^2+y=x^3+x^2-6057700x-5830179044\) |
86.2.0.? |
$[ ]$ |
| 232845.d1 |
232845d1 |
232845.d |
232845d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3 \cdot 5^{4} \cdot 19^{10} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$10.69069109$ |
$1$ |
|
$0$ |
$4114944$ |
$2.084953$ |
$-42471289/80625$ |
$0.88203$ |
$3.92153$ |
$[1, 0, 0, -133036, 38629241]$ |
\(y^2+xy=x^3-133036x+38629241\) |
516.2.0.? |
$[(27553/9, 4048813/9)]$ |
| 232845.e1 |
232845e4 |
232845.e |
232845e |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3 \cdot 5^{4} \cdot 19^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$98040$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1267200$ |
$1.658863$ |
$36097320816649/80625$ |
$0.94094$ |
$3.95560$ |
$[1, 0, 0, -248556, -47716905]$ |
\(y^2+xy=x^3-248556x-47716905\) |
2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 228.12.0.?, 258.6.0.?, $\ldots$ |
$[ ]$ |
| 232845.e2 |
232845e3 |
232845.e |
232845e |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3 \cdot 5 \cdot 19^{6} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$98040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1267200$ |
$1.658863$ |
$184122897769/51282015$ |
$1.05622$ |
$3.52849$ |
$[1, 0, 0, -42786, 2449821]$ |
\(y^2+xy=x^3-42786x+2449821\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0.h.1, 228.12.0.?, 380.12.0.?, $\ldots$ |
$[ ]$ |
| 232845.e3 |
232845e2 |
232845.e |
232845e |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{2} \cdot 5^{2} \cdot 19^{6} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$49020$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$633600$ |
$1.312290$ |
$9116230969/416025$ |
$0.87424$ |
$3.28528$ |
$[1, 0, 0, -15711, -728784]$ |
\(y^2+xy=x^3-15711x-728784\) |
2.6.0.a.1, 60.12.0.a.1, 228.12.0.?, 380.12.0.?, 516.12.0.?, $\ldots$ |
$[ ]$ |
| 232845.e4 |
232845e1 |
232845.e |
232845e |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{4} \cdot 5 \cdot 19^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$98040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$316800$ |
$0.965716$ |
$357911/17415$ |
$0.85974$ |
$2.82199$ |
$[1, 0, 0, 534, -43245]$ |
\(y^2+xy=x^3+534x-43245\) |
2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 380.12.0.?, 430.6.0.?, $\ldots$ |
$[ ]$ |
| 232845.f1 |
232845f4 |
232845.f |
232845f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{3} \cdot 5^{2} \cdot 19^{7} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$19608$ |
$48$ |
$0$ |
$11.98367309$ |
$1$ |
|
$0$ |
$11888640$ |
$2.794029$ |
$35450760458736972649/43846122825$ |
$0.94531$ |
$5.07207$ |
$[1, 0, 0, -24706306, -47269204189]$ |
\(y^2+xy=x^3-24706306x-47269204189\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 114.6.0.?, 228.24.0.?, 1032.24.0.?, $\ldots$ |
$[(-2250755/28, 35973127/28)]$ |
| 232845.f2 |
232845f2 |
232845.f |
232845f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{6} \cdot 5^{4} \cdot 19^{8} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$9804$ |
$48$ |
$0$ |
$5.991836547$ |
$1$ |
|
$2$ |
$5944320$ |
$2.447456$ |
$8876043294138649/304124675625$ |
$0.90275$ |
$4.40105$ |
$[1, 0, 0, -1557181, -725573464]$ |
\(y^2+xy=x^3-1557181x-725573464\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 228.24.0.?, 516.24.0.?, 3268.24.0.?, $\ldots$ |
$[(-10099/4, 176123/4)]$ |
| 232845.f3 |
232845f1 |
232845.f |
232845f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{12} \cdot 5^{2} \cdot 19^{7} \cdot 43 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$19608$ |
$48$ |
$0$ |
$2.995918273$ |
$1$ |
|
$7$ |
$2972160$ |
$2.100883$ |
$33042169120969/10854682425$ |
$0.87371$ |
$3.94845$ |
$[1, 0, 0, -241336, 29984735]$ |
\(y^2+xy=x^3-241336x+29984735\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 456.24.0.?, 1032.24.0.?, 1634.6.0.?, $\ldots$ |
$[(-22, 5951)]$ |
| 232845.f4 |
232845f3 |
232845.f |
232845f |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{3} \cdot 5^{8} \cdot 19^{10} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$19608$ |
$48$ |
$0$ |
$11.98367309$ |
$1$ |
|
$0$ |
$11888640$ |
$2.794029$ |
$366923296278071/59102609765625$ |
$0.95837$ |
$4.59844$ |
$[1, 0, 0, 538424, -2532404095]$ |
\(y^2+xy=x^3+538424x-2532404095\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 228.12.0.?, 456.24.0.?, $\ldots$ |
$[(3882997/12, 7630646393/12)]$ |
| 232845.g1 |
232845g1 |
232845.g |
232845g |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{7} \cdot 5^{3} \cdot 19^{2} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2580$ |
$2$ |
$0$ |
$0.562341548$ |
$1$ |
|
$6$ |
$598752$ |
$1.342562$ |
$-7061909557328281/21735226125$ |
$0.92310$ |
$3.42994$ |
$[1, 0, 0, -28460, -1855275]$ |
\(y^2+xy=x^3-28460x-1855275\) |
2580.2.0.? |
$[(205, 865)]$ |
| 232845.h1 |
232845h1 |
232845.h |
232845h |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{3} \cdot 5^{2} \cdot 19^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$471744$ |
$1.114872$ |
$1263214441/29025$ |
$0.85169$ |
$3.12536$ |
$[1, 0, 0, -8130, -277173]$ |
\(y^2+xy=x^3-8130x-277173\) |
2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? |
$[ ]$ |
| 232845.h2 |
232845h2 |
232845.h |
232845h |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5 \cdot 19^{6} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$943488$ |
$1.461445$ |
$1685159/6739605$ |
$1.19354$ |
$3.30509$ |
$[1, 0, 0, 895, -856578]$ |
\(y^2+xy=x^3+895x-856578\) |
2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? |
$[ ]$ |
| 232845.i1 |
232845i1 |
232845.i |
232845i |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{12} \cdot 5^{8} \cdot 19^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1.375989942$ |
$1$ |
|
$4$ |
$10063872$ |
$2.637981$ |
$660867352100864/8926548046875$ |
$1.07121$ |
$4.44223$ |
$[0, -1, 1, 655095, -964829194]$ |
\(y^2+y=x^3-x^2+655095x-964829194\) |
86.2.0.? |
$[(22110, 3289612)]$ |
| 232845.j1 |
232845j1 |
232845.j |
232845j |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3 \cdot 5^{4} \cdot 19^{4} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$516$ |
$2$ |
$0$ |
$1.941074372$ |
$1$ |
|
$2$ |
$216576$ |
$0.612732$ |
$-42471289/80625$ |
$0.88203$ |
$2.49197$ |
$[1, 1, 0, -368, -5787]$ |
\(y^2+xy=x^3+x^2-368x-5787\) |
516.2.0.? |
$[(36, 153)]$ |
| 232845.k1 |
232845k1 |
232845.k |
232845k |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{7} \cdot 5^{3} \cdot 19^{8} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2580$ |
$2$ |
$0$ |
$4.426812605$ |
$1$ |
|
$2$ |
$11376288$ |
$2.814781$ |
$-7061909557328281/21735226125$ |
$0.92310$ |
$4.85950$ |
$[1, 1, 0, -10274067, 12704783094]$ |
\(y^2+xy=x^3+x^2-10274067x+12704783094\) |
2580.2.0.? |
$[(-242, 123316)]$ |
| 232845.l1 |
232845l1 |
232845.l |
232845l |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5^{2} \cdot 19^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1.912060635$ |
$1$ |
|
$0$ |
$1382400$ |
$1.284664$ |
$99897344/783675$ |
$0.89128$ |
$3.12478$ |
$[0, -1, 1, 3490, -282319]$ |
\(y^2+y=x^3-x^2+3490x-282319\) |
86.2.0.? |
$[(1325/2, 48731/2)]$ |
| 232845.m1 |
232845m1 |
232845.m |
232845m |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{9} \cdot 19^{8} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$16.64085709$ |
$1$ |
|
$0$ |
$33291648$ |
$3.202282$ |
$3212716834443833344/292517578125$ |
$1.04383$ |
$5.35430$ |
$[0, 1, 1, -79017966, 270308935451]$ |
\(y^2+y=x^3+x^2-79017966x+270308935451\) |
10.2.0.a.1 |
$[(-152273811/134, 1383456785447/134)]$ |
| 232845.n1 |
232845n1 |
232845.n |
232845n |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5^{2} \cdot 19^{6} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8294400$ |
$2.314686$ |
$-645008376471556096/783675$ |
$1.01002$ |
$4.74786$ |
$[0, 1, 1, -6498120, 6373561331]$ |
\(y^2+y=x^3+x^2-6498120x+6373561331\) |
86.2.0.? |
$[ ]$ |