Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
232845.a1 232845.a \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.438477537$ $[0, -1, 1, -218886, -39340258]$ \(y^2+y=x^3-x^2-218886x-39340258\) 10.2.0.a.1 $[(-1083/2, 383/2)]$
232845.b1 232845.b \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -13550657126, -880504557300784]$ \(y^2+y=x^3-x^2-13550657126x-880504557300784\) 86.2.0.? $[ ]$
232845.c1 232845.c \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -6057700, -5830179044]$ \(y^2+y=x^3+x^2-6057700x-5830179044\) 86.2.0.? $[ ]$
232845.d1 232845.d \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $10.69069109$ $[1, 0, 0, -133036, 38629241]$ \(y^2+xy=x^3-133036x+38629241\) 516.2.0.? $[(27553/9, 4048813/9)]$
232845.e1 232845.e \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -248556, -47716905]$ \(y^2+xy=x^3-248556x-47716905\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 228.12.0.?, 258.6.0.?, $\ldots$ $[ ]$
232845.e2 232845.e \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -42786, 2449821]$ \(y^2+xy=x^3-42786x+2449821\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0.h.1, 228.12.0.?, 380.12.0.?, $\ldots$ $[ ]$
232845.e3 232845.e \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -15711, -728784]$ \(y^2+xy=x^3-15711x-728784\) 2.6.0.a.1, 60.12.0.a.1, 228.12.0.?, 380.12.0.?, 516.12.0.?, $\ldots$ $[ ]$
232845.e4 232845.e \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 534, -43245]$ \(y^2+xy=x^3+534x-43245\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 380.12.0.?, 430.6.0.?, $\ldots$ $[ ]$
232845.f1 232845.f \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $11.98367309$ $[1, 0, 0, -24706306, -47269204189]$ \(y^2+xy=x^3-24706306x-47269204189\) 2.3.0.a.1, 4.12.0-4.c.1.2, 114.6.0.?, 228.24.0.?, 1032.24.0.?, $\ldots$ $[(-2250755/28, 35973127/28)]$
232845.f2 232845.f \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.991836547$ $[1, 0, 0, -1557181, -725573464]$ \(y^2+xy=x^3-1557181x-725573464\) 2.6.0.a.1, 4.12.0-2.a.1.1, 228.24.0.?, 516.24.0.?, 3268.24.0.?, $\ldots$ $[(-10099/4, 176123/4)]$
232845.f3 232845.f \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/4\Z$ $2.995918273$ $[1, 0, 0, -241336, 29984735]$ \(y^2+xy=x^3-241336x+29984735\) 2.3.0.a.1, 4.12.0-4.c.1.1, 456.24.0.?, 1032.24.0.?, 1634.6.0.?, $\ldots$ $[(-22, 5951)]$
232845.f4 232845.f \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\Z/2\Z$ $11.98367309$ $[1, 0, 0, 538424, -2532404095]$ \(y^2+xy=x^3+538424x-2532404095\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 228.12.0.?, 456.24.0.?, $\ldots$ $[(3882997/12, 7630646393/12)]$
232845.g1 232845.g \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $0.562341548$ $[1, 0, 0, -28460, -1855275]$ \(y^2+xy=x^3-28460x-1855275\) 2580.2.0.? $[(205, 865)]$
232845.h1 232845.h \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -8130, -277173]$ \(y^2+xy=x^3-8130x-277173\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[ ]$
232845.h2 232845.h \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 895, -856578]$ \(y^2+xy=x^3+895x-856578\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[ ]$
232845.i1 232845.i \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.375989942$ $[0, -1, 1, 655095, -964829194]$ \(y^2+y=x^3-x^2+655095x-964829194\) 86.2.0.? $[(22110, 3289612)]$
232845.j1 232845.j \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.941074372$ $[1, 1, 0, -368, -5787]$ \(y^2+xy=x^3+x^2-368x-5787\) 516.2.0.? $[(36, 153)]$
232845.k1 232845.k \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $4.426812605$ $[1, 1, 0, -10274067, 12704783094]$ \(y^2+xy=x^3+x^2-10274067x+12704783094\) 2580.2.0.? $[(-242, 123316)]$
232845.l1 232845.l \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.912060635$ $[0, -1, 1, 3490, -282319]$ \(y^2+y=x^3-x^2+3490x-282319\) 86.2.0.? $[(1325/2, 48731/2)]$
232845.m1 232845.m \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $16.64085709$ $[0, 1, 1, -79017966, 270308935451]$ \(y^2+y=x^3+x^2-79017966x+270308935451\) 10.2.0.a.1 $[(-152273811/134, 1383456785447/134)]$
232845.n1 232845.n \( 3 \cdot 5 \cdot 19^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -6498120, 6373561331]$ \(y^2+y=x^3+x^2-6498120x+6373561331\) 86.2.0.? $[ ]$
  displayed columns for results