Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
227154.a1 227154.a \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $15.58766358$ $[1, 1, 0, -29628, -1963824]$ \(y^2+xy=x^3+x^2-29628x-1963824\) 3144.2.0.? $[(-9958141/310, 4047678207/310)]$
227154.b1 227154.b \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1515955, -960723347]$ \(y^2+xy=x^3+x^2-1515955x-960723347\) 1048.2.0.? $[ ]$
227154.c1 227154.c \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $4.450920004$ $[1, 1, 0, -4774, 281128]$ \(y^2+xy=x^3+x^2-4774x+281128\) 1572.2.0.? $[(84, 652)]$
227154.d1 227154.d \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -41766, -2806548]$ \(y^2+xy=x^3+x^2-41766x-2806548\) 3.4.0.a.1, 51.8.0-3.a.1.1, 3144.8.0.?, 53448.16.0.? $[ ]$
227154.d2 227154.d \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -11421, 464643]$ \(y^2+xy=x^3+x^2-11421x+464643\) 3.4.0.a.1, 51.8.0-3.a.1.2, 3144.8.0.?, 53448.16.0.? $[ ]$
227154.e1 227154.e \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $1.361825775$ $[1, 0, 1, 351562, 32533414472]$ \(y^2+xy+y=x^3+351562x+32533414472\) 1048.2.0.? $[(-1098, 176116)]$
227154.f1 227154.f \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $0.702074827$ $[1, 0, 1, -59107, 54888734]$ \(y^2+xy+y=x^3-59107x+54888734\) 4454.2.0.? $[(-248, 7493)]$
227154.g1 227154.g \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1615372, 790101266]$ \(y^2+xy+y=x^3-1615372x+790101266\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 136.12.0.?, 408.24.0.?, $\ldots$ $[ ]$
227154.g2 227154.g \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -101012, 12325970]$ \(y^2+xy+y=x^3-101012x+12325970\) 2.6.0.a.1, 24.12.0.a.1, 136.12.0.?, 204.12.0.?, 408.24.0.?, $\ldots$ $[ ]$
227154.g3 227154.g \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -66332, 20926610]$ \(y^2+xy+y=x^3-66332x+20926610\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.v.1, 136.12.0.?, 204.12.0.?, $\ldots$ $[ ]$
227154.g4 227154.g \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -8532, 44626]$ \(y^2+xy+y=x^3-8532x+44626\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 136.12.0.?, 204.12.0.?, $\ldots$ $[ ]$
227154.h1 227154.h \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $7.653757382$ $[1, 0, 1, -2463, 46360]$ \(y^2+xy+y=x^3-2463x+46360\) 3144.2.0.? $[(-1376/5, 19147/5)]$
227154.i1 227154.i \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -987953, -378047716]$ \(y^2+xy+y=x^3-987953x-378047716\) 3144.2.0.? $[ ]$
227154.j1 227154.j \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $1.967451038$ $[1, 0, 1, -81360, 8926174]$ \(y^2+xy+y=x^3-81360x+8926174\) 1572.2.0.? $[(161, 3)]$
227154.k1 227154.k \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -54610, -4934689]$ \(y^2+xy+y=x^3+x^2-54610x-4934689\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.q.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ $[ ]$
227154.k2 227154.k \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -53250, -5190369]$ \(y^2+xy+y=x^3+x^2-53250x-5190369\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.t.1, 68.12.0.l.1, 136.24.0.?, $\ldots$ $[ ]$
227154.l1 227154.l \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\Z/2\Z$ $3.079011080$ $[1, 1, 1, -358944, 82602561]$ \(y^2+xy+y=x^3+x^2-358944x+82602561\) 2.3.0.a.1, 8.6.0.d.1, 13362.6.0.?, 53448.12.0.? $[(357, 165)]$
227154.l2 227154.l \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\Z/2\Z$ $1.539505540$ $[1, 1, 1, -312704, 104723777]$ \(y^2+xy+y=x^3+x^2-312704x+104723777\) 2.3.0.a.1, 8.6.0.a.1, 26724.6.0.?, 53448.12.0.? $[(545, 9553)]$
227154.m1 227154.m \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -65616011, -204606903193]$ \(y^2+xy+y=x^3+x^2-65616011x-204606903193\) 5.12.0.a.2, 85.24.0.?, 3144.2.0.?, 15720.24.1.?, 267240.48.1.? $[ ]$
227154.m2 227154.m \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -617021, 177057587]$ \(y^2+xy+y=x^3+x^2-617021x+177057587\) 5.12.0.a.1, 85.24.0.?, 3144.2.0.?, 15720.24.1.?, 267240.48.1.? $[ ]$
227154.n1 227154.n \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -1113812, 496049429]$ \(y^2+xy+y=x^3+x^2-1113812x+496049429\) 1048.2.0.? $[ ]$
227154.o1 227154.o \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $0.633731768$ $[1, 1, 1, 96, 16833]$ \(y^2+xy+y=x^3+x^2+96x+16833\) 24.2.0.b.1 $[(3, 129)]$
227154.p1 227154.p \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $3.995198484$ $[1, 1, 1, -12144, 189009]$ \(y^2+xy+y=x^3+x^2-12144x+189009\) 3144.2.0.? $[(-63, 873)]$
227154.q1 227154.q \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -60696, 7312281]$ \(y^2+xy+y=x^3+x^2-60696x+7312281\) 4454.2.0.? $[ ]$
227154.r1 227154.r \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $2$ $\mathsf{trivial}$ $0.465162139$ $[1, 0, 0, -210, 1476]$ \(y^2+xy=x^3-210x+1476\) 4454.2.0.? $[(24, 90), (-10, 56)]$
227154.s1 227154.s \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -20525, -1127919]$ \(y^2+xy=x^3-20525x-1127919\) 2.3.0.a.1, 8.6.0.d.1, 786.6.0.?, 3144.12.0.? $[ ]$
227154.s2 227154.s \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -8965, -2387959]$ \(y^2+xy=x^3-8965x-2387959\) 2.3.0.a.1, 8.6.0.a.1, 1572.6.0.?, 3144.12.0.? $[ ]$
227154.t1 227154.t \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 27738, 82507236]$ \(y^2+xy=x^3+27738x+82507236\) 24.2.0.b.1 $[ ]$
227154.u1 227154.u \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $2.264338415$ $[1, 0, 0, -248835, 47271489]$ \(y^2+xy=x^3-248835x+47271489\) 3144.2.0.? $[(110, 4553)]$
227154.v1 227154.v \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -15782296, -24133650112]$ \(y^2+xy=x^3-15782296x-24133650112\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.q.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ $[ ]$
227154.v2 227154.v \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -15389256, -25392557232]$ \(y^2+xy=x^3-15389256x-25392557232\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.t.1, 68.12.0.l.1, 136.24.0.?, $\ldots$ $[ ]$
227154.w1 227154.w \( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) $1$ $\mathsf{trivial}$ $1.557425731$ $[1, 0, 0, 2884, 34728]$ \(y^2+xy=x^3+2884x+34728\) 1048.2.0.? $[(262, 4204)]$
  displayed columns for results