| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 227154.a1 |
227154t1 |
227154.a |
227154t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{11} \cdot 3 \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3144$ |
$2$ |
$0$ |
$15.58766358$ |
$1$ |
|
$0$ |
$1262976$ |
$1.384295$ |
$119168121961/804864$ |
$0.91365$ |
$3.44618$ |
$[1, 1, 0, -29628, -1963824]$ |
\(y^2+xy=x^3+x^2-29628x-1963824\) |
3144.2.0.? |
$[(-9958141/310, 4047678207/310)]$ |
| 227154.b1 |
227154u1 |
227154.b |
227154u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{13} \cdot 3^{4} \cdot 17^{10} \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6709248$ |
$2.590965$ |
$-15962082856161625/7260088983552$ |
$0.92681$ |
$4.45038$ |
$[1, 1, 0, -1515955, -960723347]$ |
\(y^2+xy=x^3+x^2-1515955x-960723347\) |
1048.2.0.? |
$[ ]$ |
| 227154.c1 |
227154v1 |
227154.c |
227154v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{2} \cdot 3^{7} \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1572$ |
$2$ |
$0$ |
$4.450920004$ |
$1$ |
|
$2$ |
$739200$ |
$1.267689$ |
$-498677257/1145988$ |
$0.89539$ |
$3.13218$ |
$[1, 1, 0, -4774, 281128]$ |
\(y^2+xy=x^3+x^2-4774x+281128\) |
1572.2.0.? |
$[(84, 652)]$ |
| 227154.d1 |
227154w2 |
227154.d |
227154w |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{3} \cdot 3 \cdot 17^{6} \cdot 131^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$53448$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2298240$ |
$1.622341$ |
$333822098953/53954184$ |
$0.92728$ |
$3.52970$ |
$[1, 1, 0, -41766, -2806548]$ |
\(y^2+xy=x^3+x^2-41766x-2806548\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 3144.8.0.?, 53448.16.0.? |
$[ ]$ |
| 227154.d2 |
227154w1 |
227154.d |
227154w |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2 \cdot 3^{3} \cdot 17^{6} \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$53448$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$766080$ |
$1.073036$ |
$6826561273/7074$ |
$0.88675$ |
$3.21431$ |
$[1, 1, 0, -11421, 464643]$ |
\(y^2+xy=x^3+x^2-11421x+464643\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 3144.8.0.?, 53448.16.0.? |
$[ ]$ |
| 227154.e1 |
227154n1 |
227154.e |
227154n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{9} \cdot 3^{24} \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1048$ |
$2$ |
$0$ |
$1.361825775$ |
$1$ |
|
$2$ |
$66355200$ |
$3.218845$ |
$199084633070471/18943113870853632$ |
$1.16714$ |
$5.02167$ |
$[1, 0, 1, 351562, 32533414472]$ |
\(y^2+xy+y=x^3+351562x+32533414472\) |
1048.2.0.? |
$[(-1098, 176116)]$ |
| 227154.f1 |
227154o1 |
227154.f |
227154o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{10} \cdot 3^{4} \cdot 17^{9} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4454$ |
$2$ |
$0$ |
$0.702074827$ |
$1$ |
|
$4$ |
$3870720$ |
$2.154877$ |
$-946098541513/53383007232$ |
$0.92497$ |
$3.98633$ |
$[1, 0, 1, -59107, 54888734]$ |
\(y^2+xy+y=x^3-59107x+54888734\) |
4454.2.0.? |
$[(-248, 7493)]$ |
| 227154.g1 |
227154p3 |
227154.g |
227154p |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{3} \cdot 3^{4} \cdot 17^{6} \cdot 131 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$53448$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2949120$ |
$1.990698$ |
$19312898130234073/84888$ |
$0.98900$ |
$4.41881$ |
$[1, 0, 1, -1615372, 790101266]$ |
\(y^2+xy+y=x^3-1615372x+790101266\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 136.12.0.?, 408.24.0.?, $\ldots$ |
$[ ]$ |
| 227154.g2 |
227154p2 |
227154.g |
227154p |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{6} \cdot 3^{2} \cdot 17^{6} \cdot 131^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$53448$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1474560$ |
$1.644123$ |
$4722184089433/9884736$ |
$1.05106$ |
$3.74452$ |
$[1, 0, 1, -101012, 12325970]$ |
\(y^2+xy+y=x^3-101012x+12325970\) |
2.6.0.a.1, 24.12.0.a.1, 136.12.0.?, 204.12.0.?, 408.24.0.?, $\ldots$ |
$[ ]$ |
| 227154.g3 |
227154p4 |
227154.g |
227154p |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{3} \cdot 3 \cdot 17^{6} \cdot 131^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$53448$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2949120$ |
$1.990698$ |
$-1337180541913/7067998104$ |
$1.16620$ |
$3.82999$ |
$[1, 0, 1, -66332, 20926610]$ |
\(y^2+xy+y=x^3-66332x+20926610\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.v.1, 136.12.0.?, 204.12.0.?, $\ldots$ |
$[ ]$ |
| 227154.g4 |
227154p1 |
227154.g |
227154p |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{12} \cdot 3 \cdot 17^{6} \cdot 131 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$53448$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.297550$ |
$2845178713/1609728$ |
$0.95031$ |
$3.14335$ |
$[1, 0, 1, -8532, 44626]$ |
\(y^2+xy+y=x^3-8532x+44626\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.bb.1, 136.12.0.?, 204.12.0.?, $\ldots$ |
$[ ]$ |
| 227154.h1 |
227154q1 |
227154.h |
227154q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2 \cdot 3 \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3144$ |
$2$ |
$0$ |
$7.653757382$ |
$1$ |
|
$0$ |
$201600$ |
$0.785108$ |
$68417929/786$ |
$0.83173$ |
$2.84110$ |
$[1, 0, 1, -2463, 46360]$ |
\(y^2+xy+y=x^3-2463x+46360\) |
3144.2.0.? |
$[(-1376/5, 19147/5)]$ |
| 227154.i1 |
227154r1 |
227154.i |
227154r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{3} \cdot 3^{7} \cdot 17^{6} \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3144$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2604672$ |
$1.968491$ |
$4418129129836969/2291976$ |
$0.98193$ |
$4.29921$ |
$[1, 0, 1, -987953, -378047716]$ |
\(y^2+xy+y=x^3-987953x-378047716\) |
3144.2.0.? |
$[ ]$ |
| 227154.j1 |
227154s1 |
227154.j |
227154s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{6} \cdot 3^{3} \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1572$ |
$2$ |
$0$ |
$1.967451038$ |
$1$ |
|
$2$ |
$1033344$ |
$1.482885$ |
$-2467489596697/226368$ |
$0.93723$ |
$3.69190$ |
$[1, 0, 1, -81360, 8926174]$ |
\(y^2+xy+y=x^3-81360x+8926174\) |
1572.2.0.? |
$[(161, 3)]$ |
| 227154.k1 |
227154g1 |
227154.k |
227154g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{8} \cdot 3^{2} \cdot 17^{3} \cdot 131^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.32 |
2B |
$106896$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$1241088$ |
$1.321173$ |
$3666012780227057/39538944$ |
$0.94438$ |
$3.59492$ |
$[1, 1, 1, -54610, -4934689]$ |
\(y^2+xy+y=x^3+x^2-54610x-4934689\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.q.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ |
$[ ]$ |
| 227154.k2 |
227154g2 |
227154.k |
227154g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{4} \cdot 3^{4} \cdot 17^{3} \cdot 131^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.28 |
2B |
$106896$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2482176$ |
$1.667747$ |
$-3398883618036977/381671897616$ |
$0.94642$ |
$3.60316$ |
$[1, 1, 1, -53250, -5190369]$ |
\(y^2+xy+y=x^3+x^2-53250x-5190369\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.t.1, 68.12.0.l.1, 136.24.0.?, $\ldots$ |
$[ ]$ |
| 227154.l1 |
227154h1 |
227154.l |
227154h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{10} \cdot 3^{3} \cdot 17^{7} \cdot 131 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$53448$ |
$12$ |
$0$ |
$3.079011080$ |
$1$ |
|
$5$ |
$2350080$ |
$1.890848$ |
$211889947838113/61572096$ |
$0.89180$ |
$4.05293$ |
$[1, 1, 1, -358944, 82602561]$ |
\(y^2+xy+y=x^3+x^2-358944x+82602561\) |
2.3.0.a.1, 8.6.0.d.1, 13362.6.0.?, 53448.12.0.? |
$[(357, 165)]$ |
| 227154.l2 |
227154h2 |
227154.l |
227154h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{5} \cdot 3^{6} \cdot 17^{8} \cdot 131^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$53448$ |
$12$ |
$0$ |
$1.539505540$ |
$1$ |
|
$6$ |
$4700160$ |
$2.237419$ |
$-140097562913953/115695892512$ |
$0.90218$ |
$4.09128$ |
$[1, 1, 1, -312704, 104723777]$ |
\(y^2+xy+y=x^3+x^2-312704x+104723777\) |
2.3.0.a.1, 8.6.0.a.1, 26724.6.0.?, 53448.12.0.? |
$[(545, 9553)]$ |
| 227154.m1 |
227154i2 |
227154.m |
227154i |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2 \cdot 3^{3} \cdot 17^{6} \cdot 131^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$267240$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$18480000$ |
$3.044682$ |
$1294373635812597347281/2083292441154$ |
$1.03042$ |
$5.31984$ |
$[1, 1, 1, -65616011, -204606903193]$ |
\(y^2+xy+y=x^3+x^2-65616011x-204606903193\) |
5.12.0.a.2, 85.24.0.?, 3144.2.0.?, 15720.24.1.?, 267240.48.1.? |
$[ ]$ |
| 227154.m2 |
227154i1 |
227154.m |
227154i |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{5} \cdot 3^{15} \cdot 17^{6} \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$267240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3696000$ |
$2.239964$ |
$1076291879750641/60150618144$ |
$0.97610$ |
$4.18471$ |
$[1, 1, 1, -617021, 177057587]$ |
\(y^2+xy+y=x^3+x^2-617021x+177057587\) |
5.12.0.a.1, 85.24.0.?, 3144.2.0.?, 15720.24.1.?, 267240.48.1.? |
$[ ]$ |
| 227154.n1 |
227154j1 |
227154.n |
227154j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{7} \cdot 3^{2} \cdot 17^{8} \cdot 131^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8128512$ |
$2.430798$ |
$-6330906302194657/748452440448$ |
$0.91624$ |
$4.34345$ |
$[1, 1, 1, -1113812, 496049429]$ |
\(y^2+xy+y=x^3+x^2-1113812x+496049429\) |
1048.2.0.? |
$[ ]$ |
| 227154.o1 |
227154k1 |
227154.o |
227154k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{13} \cdot 3 \cdot 17^{2} \cdot 131^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.633731768$ |
$1$ |
|
$4$ |
$292032$ |
$0.806186$ |
$338342687/421748736$ |
$0.94976$ |
$2.67409$ |
$[1, 1, 1, 96, 16833]$ |
\(y^2+xy+y=x^3+x^2+96x+16833\) |
24.2.0.b.1 |
$[(3, 129)]$ |
| 227154.p1 |
227154l1 |
227154.p |
227154l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{7} \cdot 3^{5} \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3144$ |
$2$ |
$0$ |
$3.995198484$ |
$1$ |
|
$2$ |
$1447040$ |
$1.377943$ |
$8205738913/4074624$ |
$0.92368$ |
$3.22923$ |
$[1, 1, 1, -12144, 189009]$ |
\(y^2+xy+y=x^3+x^2-12144x+189009\) |
3144.2.0.? |
$[(-63, 873)]$ |
| 227154.q1 |
227154m1 |
227154.q |
227154m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{6} \cdot 3^{2} \cdot 17^{9} \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4454$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2350080$ |
$1.771421$ |
$-208527857/75456$ |
$0.80864$ |
$3.66000$ |
$[1, 1, 1, -60696, 7312281]$ |
\(y^2+xy+y=x^3+x^2-60696x+7312281\) |
4454.2.0.? |
$[ ]$ |
| 227154.r1 |
227154a1 |
227154.r |
227154a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{6} \cdot 3^{2} \cdot 17^{3} \cdot 131 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4454$ |
$2$ |
$0$ |
$0.465162139$ |
$1$ |
|
$14$ |
$138240$ |
$0.354815$ |
$-208527857/75456$ |
$0.80864$ |
$2.28169$ |
$[1, 0, 0, -210, 1476]$ |
\(y^2+xy=x^3-210x+1476\) |
4454.2.0.? |
$[(24, 90), (-10, 56)]$ |
| 227154.s1 |
227154b1 |
227154.s |
227154b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{6} \cdot 3^{3} \cdot 17^{6} \cdot 131 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$3144$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1474560$ |
$1.285576$ |
$39616946929/226368$ |
$0.90388$ |
$3.35689$ |
$[1, 0, 0, -20525, -1127919]$ |
\(y^2+xy=x^3-20525x-1127919\) |
2.3.0.a.1, 8.6.0.d.1, 786.6.0.?, 3144.12.0.? |
$[ ]$ |
| 227154.s2 |
227154b2 |
227154.s |
227154b |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{3} \cdot 3^{6} \cdot 17^{6} \cdot 131^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$3144$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2949120$ |
$1.632149$ |
$-3301293169/100082952$ |
$0.96192$ |
$3.47791$ |
$[1, 0, 0, -8965, -2387959]$ |
\(y^2+xy=x^3-8965x-2387959\) |
2.3.0.a.1, 8.6.0.a.1, 1572.6.0.?, 3144.12.0.? |
$[ ]$ |
| 227154.t1 |
227154c1 |
227154.t |
227154c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{13} \cdot 3 \cdot 17^{8} \cdot 131^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4964544$ |
$2.222794$ |
$338342687/421748736$ |
$0.94976$ |
$4.05241$ |
$[1, 0, 0, 27738, 82507236]$ |
\(y^2+xy=x^3+27738x+82507236\) |
24.2.0.b.1 |
$[ ]$ |
| 227154.u1 |
227154d1 |
227154.u |
227154d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{21} \cdot 3 \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3144$ |
$2$ |
$0$ |
$2.264338415$ |
$1$ |
|
$2$ |
$2411136$ |
$1.939714$ |
$70593496254289/824180736$ |
$0.95961$ |
$3.96381$ |
$[1, 0, 0, -248835, 47271489]$ |
\(y^2+xy=x^3-248835x+47271489\) |
3144.2.0.? |
$[(110, 4553)]$ |
| 227154.v1 |
227154e1 |
227154.v |
227154e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( 2^{8} \cdot 3^{2} \cdot 17^{9} \cdot 131^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.32 |
2B |
$106896$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$21098496$ |
$2.737782$ |
$3666012780227057/39538944$ |
$0.94438$ |
$4.97323$ |
$[1, 0, 0, -15782296, -24133650112]$ |
\(y^2+xy=x^3-15782296x-24133650112\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.q.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ |
$[ ]$ |
| 227154.v2 |
227154e2 |
227154.v |
227154e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{4} \cdot 3^{4} \cdot 17^{9} \cdot 131^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.28 |
2B |
$106896$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$42196992$ |
$3.084354$ |
$-3398883618036977/381671897616$ |
$0.94642$ |
$4.98148$ |
$[1, 0, 0, -15389256, -25392557232]$ |
\(y^2+xy=x^3-15389256x-25392557232\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.t.1, 68.12.0.l.1, 136.24.0.?, $\ldots$ |
$[ ]$ |
| 227154.w1 |
227154f1 |
227154.w |
227154f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 131 \) |
\( - 2^{3} \cdot 3^{4} \cdot 17^{6} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1048$ |
$2$ |
$0$ |
$1.557425731$ |
$1$ |
|
$2$ |
$737280$ |
$1.050417$ |
$109902239/84888$ |
$0.87261$ |
$2.87953$ |
$[1, 0, 0, 2884, 34728]$ |
\(y^2+xy=x^3+2884x+34728\) |
1048.2.0.? |
$[(262, 4204)]$ |