Learn more

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
225420.a1 225420.a \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1313601, -573129954]$ \(y^2=x^3-x^2-1313601x-573129954\) 2.3.0.a.1, 4.6.0.b.1, 120.12.0.?, 170.6.0.?, 340.12.0.?, $\ldots$ $[ ]$
225420.a2 225420.a \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -260196, -1467681480]$ \(y^2=x^3-x^2-260196x-1467681480\) 2.3.0.a.1, 4.6.0.a.1, 120.12.0.?, 340.12.0.?, 408.12.0.?, $\ldots$ $[ ]$
225420.b1 225420.b \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -136376306, 613764260481]$ \(y^2=x^3-x^2-136376306x+613764260481\) 510.2.0.? $[ ]$
225420.c1 225420.c \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $1.357925515$ $[0, -1, 0, -521, 2946]$ \(y^2=x^3-x^2-521x+2946\) 2.3.0.a.1, 52.6.0.e.1, 68.6.0.b.1, 442.6.0.?, 884.12.0.? $[(23, 51), (-11, 85)]$
225420.c2 225420.c \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $1.357925515$ $[0, -1, 0, 1604, 19096]$ \(y^2=x^3-x^2+1604x+19096\) 2.3.0.a.1, 52.6.0.e.1, 68.6.0.a.1, 884.12.0.? $[(6, 170), (-2, 126)]$
225420.d1 225420.d \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 499, 28905]$ \(y^2=x^3-x^2+499x+28905\) 6630.2.0.? $[ ]$
225420.e1 225420.e \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.106339404$ $[0, -1, 0, -37666, 4377301]$ \(y^2=x^3-x^2-37666x+4377301\) 510.2.0.? $[(123, 1261)]$
225420.f1 225420.f \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.199591417$ $[0, -1, 0, -4336541, 3393895305]$ \(y^2=x^3-x^2-4336541x+3393895305\) 10.2.0.a.1 $[(771, 22542)]$
225420.g1 225420.g \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -109916, 10976616]$ \(y^2=x^3-x^2-109916x+10976616\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? $[ ]$
225420.g2 225420.g \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -36221, -2494830]$ \(y^2=x^3-x^2-36221x-2494830\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? $[ ]$
225420.h1 225420.h \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -7149956, -7086354744]$ \(y^2=x^3-x^2-7149956x-7086354744\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? $[ ]$
225420.h2 225420.h \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1180661, 346611390]$ \(y^2=x^3-x^2-1180661x+346611390\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? $[ ]$
225420.i1 225420.i \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $19.85145604$ $[0, -1, 0, -951502540, -9044102917400]$ \(y^2=x^3-x^2-951502540x-9044102917400\) 2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? $[(35174601405/877, 4427780603800840/877)]$
225420.i2 225420.i \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $39.70291209$ $[0, -1, 0, -897778885, -10353004558358]$ \(y^2=x^3-x^2-897778885x-10353004558358\) 2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? $[(22147810002529103729/17441776, 93446473628313453701074581495/17441776)]$
225420.j1 225420.j \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.905412386$ $[0, -1, 0, -56060605, 162061392025]$ \(y^2=x^3-x^2-56060605x+162061392025\) 6630.2.0.? $[(38440/3, 614125/3)]$
225420.k1 225420.k \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.495430279$ $[0, -1, 0, -34587905, -78283543350]$ \(y^2=x^3-x^2-34587905x-78283543350\) 2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.4, 136.12.0.?, 170.6.0.?, $\ldots$ $[(-3395, 115)]$
225420.k2 225420.k \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.747715139$ $[0, -1, 0, -34470860, -78839788008]$ \(y^2=x^3-x^2-34470860x-78839788008\) 2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.2, 136.12.0.?, 340.12.0.?, $\ldots$ $[(8234, 442170)]$
225420.l1 225420.l \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -66430, -6568523]$ \(y^2=x^3-x^2-66430x-6568523\) 510.2.0.? $[ ]$
225420.m1 225420.m \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $2.900967323$ $[0, -1, 0, -71700, -25785000]$ \(y^2=x^3-x^2-71700x-25785000\) 3.4.0.a.1, 51.8.0-3.a.1.1, 260.2.0.?, 780.8.0.?, 13260.16.0.? $[(1025, 31250), (525, 9000)]$
225420.m2 225420.m \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.322329702$ $[0, -1, 0, 7860, 883512]$ \(y^2=x^3-x^2+7860x+883512\) 3.4.0.a.1, 51.8.0-3.a.1.2, 260.2.0.?, 780.8.0.?, 13260.16.0.? $[(-46, 650), (474, 10530)]$
225420.n1 225420.n \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -422325, 105780465]$ \(y^2=x^3-x^2-422325x+105780465\) 3.4.0.a.1, 51.8.0-3.a.1.2, 390.8.0.?, 6630.16.0.? $[ ]$
225420.n2 225420.n \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -144885, 241601217]$ \(y^2=x^3-x^2-144885x+241601217\) 3.4.0.a.1, 51.8.0-3.a.1.1, 390.8.0.?, 6630.16.0.? $[ ]$
225420.o1 225420.o \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.468393384$ $[0, -1, 0, 67530, 114603057]$ \(y^2=x^3-x^2+67530x+114603057\) 510.2.0.? $[(584, 18785), (142, 11271)]$
225420.p1 225420.p \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -445445, -63166623]$ \(y^2=x^3-x^2-445445x-63166623\) 10.2.0.a.1 $[ ]$
225420.q1 225420.q \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -63965, -7089063]$ \(y^2=x^3-x^2-63965x-7089063\) 3.4.0.a.1, 51.8.0-3.a.1.1, 390.8.0.?, 6630.16.0.? $[ ]$
225420.q2 225420.q \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 5395, 41145]$ \(y^2=x^3-x^2+5395x+41145\) 3.4.0.a.1, 51.8.0-3.a.1.2, 390.8.0.?, 6630.16.0.? $[ ]$
225420.r1 225420.r \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $1.628623939$ $[0, -1, 0, -1108700, 449706360]$ \(y^2=x^3-x^2-1108700x+449706360\) 260.2.0.? $[(482, 5202), (15229/5, 8092/5)]$
225420.s1 225420.s \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -194100375340, -32914684500763688]$ \(y^2=x^3-x^2-194100375340x-32914684500763688\) 260.2.0.? $[ ]$
225420.t1 225420.t \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.780179959$ $[0, -1, 0, -23505, 140850]$ \(y^2=x^3-x^2-23505x+140850\) 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ $[(-75, 1215)]$
225420.t2 225420.t \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.890089979$ $[0, -1, 0, 93540, 1030392]$ \(y^2=x^3-x^2+93540x+1030392\) 2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 136.12.0.?, 520.24.0.?, $\ldots$ $[(74, 2890)]$
225420.u1 225420.u \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -83696230, 410637869605]$ \(y^2=x^3-x^2-83696230x+410637869605\) 510.2.0.? $[ ]$
225420.v1 225420.v \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.860896334$ $[0, 1, 0, -289606, 83479685]$ \(y^2=x^3+x^2-289606x+83479685\) 510.2.0.? $[(521, 8619), (1421/2, 40443/2)]$
225420.w1 225420.w \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 56259, -962487441]$ \(y^2=x^3+x^2+56259x-962487441\) 390.2.0.? $[ ]$
225420.x1 225420.x \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 181974, 3081789]$ \(y^2=x^3+x^2+181974x+3081789\) 510.2.0.? $[ ]$
225420.y1 225420.y \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $13.00111711$ $[0, 1, 0, -671627596, -6699745390396]$ \(y^2=x^3+x^2-671627596x-6699745390396\) 260.2.0.? $[(25382636/5, 127838710566/5)]$
225420.z1 225420.z \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.070122080$ $[0, 1, 0, -711536881, -4851441653656]$ \(y^2=x^3+x^2-711536881x-4851441653656\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ $[(29795, 632043)]$
225420.z2 225420.z \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $6.140244161$ $[0, 1, 0, 2028369524, -33173306180860]$ \(y^2=x^3+x^2+2028369524x-33173306180860\) 2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 52.12.0.d.1, 104.24.0.?, $\ldots$ $[(15056, 882606)]$
225420.ba1 225420.ba \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.853796536$ $[0, 1, 0, -3836, 90180]$ \(y^2=x^3+x^2-3836x+90180\) 260.2.0.? $[(36, 6)]$
225420.bb1 225420.bb \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.342481575$ $[0, 1, 0, -1541, -13401]$ \(y^2=x^3+x^2-1541x-13401\) 10.2.0.a.1 $[(-23, 102)]$
225420.bc1 225420.bc \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $10.93273456$ $[0, 1, 0, -203365061, -1118936410761]$ \(y^2=x^3+x^2-203365061x-1118936410761\) 6630.2.0.? $[(154382290/73, 1618250361291/73)]$
225420.bd1 225420.bd \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $0.598836426$ $[0, 1, 0, -30441, 2028384]$ \(y^2=x^3+x^2-30441x+2028384\) 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ $[(45, 867)]$
225420.bd2 225420.bd \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.197672852$ $[0, 1, 0, -17436, 3786660]$ \(y^2=x^3+x^2-17436x+3786660\) 2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 408.12.0.?, 520.24.0.?, $\ldots$ $[(96, 1734)]$
225420.be1 225420.be \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $18.70981530$ $[0, 1, 0, -20721396, -126806033196]$ \(y^2=x^3+x^2-20721396x-126806033196\) 3.8.0-3.a.1.1, 260.2.0.?, 780.16.0.? $[(84826019/115, 98598071922/115)]$
225420.be2 225420.be \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\Z/3\Z$ $6.236605102$ $[0, 1, 0, 2271444, 4354323300]$ \(y^2=x^3+x^2+2271444x+4354323300\) 3.8.0-3.a.1.2, 260.2.0.?, 780.16.0.? $[(4236, 300006)]$
225420.bf1 225420.bf \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -19198366, -32386343515]$ \(y^2=x^3+x^2-19198366x-32386343515\) 510.2.0.? $[ ]$
225420.bg1 225420.bg \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.653120294$ $[0, 1, 0, -193981, 32917775]$ \(y^2=x^3+x^2-193981x+32917775\) 6630.2.0.? $[(266, 459)]$
225420.bh1 225420.bh \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.156267948$ $[0, 1, 0, -15005, 685503]$ \(y^2=x^3+x^2-15005x+685503\) 10.2.0.a.1 $[(-59, 1170), (61, 30)]$
225420.bi1 225420.bi \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $3.233056811$ $[0, 1, 0, -19317145, -32666168632]$ \(y^2=x^3+x^2-19317145x-32666168632\) 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ $[(-2539, 4335), (-2569, 3375)]$
225420.bi2 225420.bi \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $3.233056811$ $[0, 1, 0, -15558700, -45754577500]$ \(y^2=x^3+x^2-15558700x-45754577500\) 2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 52.12.0.d.1, 312.24.0.?, $\ldots$ $[(24100, 3684750), (12200, 1257150)]$
225420.bj1 225420.bj \( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -5040545, -4319144700]$ \(y^2=x^3+x^2-5040545x-4319144700\) 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ $[ ]$
Next   displayed columns for results