Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
225420.a1 |
225420bi1 |
225420.a |
225420bi |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 5 \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6635520$ |
$2.355972$ |
$649084058484736/7634149965$ |
$0.93888$ |
$4.37122$ |
$[0, -1, 0, -1313601, -573129954]$ |
\(y^2=x^3-x^2-1313601x-573129954\) |
2.3.0.a.1, 4.6.0.b.1, 120.12.0.?, 170.6.0.?, 340.12.0.?, $\ldots$ |
$[ ]$ |
225420.a2 |
225420bi2 |
225420.a |
225420bi |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 13^{4} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$13271040$ |
$2.702545$ |
$-315278049616/150431501025$ |
$0.95329$ |
$4.52202$ |
$[0, -1, 0, -260196, -1467681480]$ |
\(y^2=x^3-x^2-260196x-1467681480\) |
2.3.0.a.1, 4.6.0.a.1, 120.12.0.?, 340.12.0.?, 408.12.0.?, $\ldots$ |
$[ ]$ |
225420.b1 |
225420bj1 |
225420.b |
225420bj |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{9} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$41057280$ |
$3.430229$ |
$-726318275968040118016/994029943359375$ |
$0.97721$ |
$5.50140$ |
$[0, -1, 0, -136376306, 613764260481]$ |
\(y^2=x^3-x^2-136376306x+613764260481\) |
510.2.0.? |
$[ ]$ |
225420.c1 |
225420bk1 |
225420.c |
225420bk |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 13 \cdot 17^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1.357925515$ |
$1$ |
|
$19$ |
$122880$ |
$0.572931$ |
$199344128/73125$ |
$0.85479$ |
$2.46499$ |
$[0, -1, 0, -521, 2946]$ |
\(y^2=x^3-x^2-521x+2946\) |
2.3.0.a.1, 52.6.0.e.1, 68.6.0.b.1, 442.6.0.?, 884.12.0.? |
$[(23, 51), (-11, 85)]$ |
225420.c2 |
225420bk2 |
225420.c |
225420bk |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 13^{2} \cdot 17^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$884$ |
$12$ |
$0$ |
$1.357925515$ |
$1$ |
|
$17$ |
$245760$ |
$0.919505$ |
$362642992/342225$ |
$0.81940$ |
$2.73848$ |
$[0, -1, 0, 1604, 19096]$ |
\(y^2=x^3-x^2+1604x+19096\) |
2.3.0.a.1, 52.6.0.e.1, 68.6.0.a.1, 884.12.0.? |
$[(6, 170), (-2, 126)]$ |
225420.d1 |
225420bl1 |
225420.d |
225420bl |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \cdot 13^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$283392$ |
$0.900521$ |
$10903552/296595$ |
$0.89717$ |
$2.76480$ |
$[0, -1, 0, 499, 28905]$ |
\(y^2=x^3-x^2+499x+28905\) |
6630.2.0.? |
$[ ]$ |
225420.e1 |
225420bm1 |
225420.e |
225420bm |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.106339404$ |
$1$ |
|
$2$ |
$966144$ |
$1.707264$ |
$-3114752/2535$ |
$0.71365$ |
$3.57799$ |
$[0, -1, 0, -37666, 4377301]$ |
\(y^2=x^3-x^2-37666x+4377301\) |
510.2.0.? |
$[(123, 1261)]$ |
225420.f1 |
225420bn1 |
225420.f |
225420bn |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{3} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.199591417$ |
$1$ |
|
$2$ |
$9870336$ |
$2.692974$ |
$5050365927424/138601125$ |
$0.92510$ |
$4.66191$ |
$[0, -1, 0, -4336541, 3393895305]$ |
\(y^2=x^3-x^2-4336541x+3393895305\) |
10.2.0.a.1 |
$[(771, 22542)]$ |
225420.g1 |
225420bo2 |
225420.g |
225420bo |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3 \cdot 5^{4} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2211840$ |
$1.883030$ |
$23767139536/5386875$ |
$0.80761$ |
$3.76741$ |
$[0, -1, 0, -109916, 10976616]$ |
\(y^2=x^3-x^2-109916x+10976616\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
225420.g2 |
225420bo1 |
225420.g |
225420bo |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1105920$ |
$1.536457$ |
$13608288256/845325$ |
$0.86451$ |
$3.49722$ |
$[0, -1, 0, -36221, -2494830]$ |
\(y^2=x^3-x^2-36221x-2494830\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
225420.h1 |
225420bp2 |
225420.h |
225420bp |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$13271040$ |
$2.837990$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.78361$ |
$[0, -1, 0, -7149956, -7086354744]$ |
\(y^2=x^3-x^2-7149956x-7086354744\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
225420.h2 |
225420bp1 |
225420.h |
225420bp |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{4} \cdot 13 \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6635520$ |
$2.491413$ |
$471287826743296/138654433125$ |
$1.01443$ |
$4.34525$ |
$[0, -1, 0, -1180661, 346611390]$ |
\(y^2=x^3-x^2-1180661x+346611390\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
225420.i1 |
225420v2 |
225420.i |
225420v |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{7} \cdot 5^{4} \cdot 13^{10} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$19.85145604$ |
$1$ |
|
$1$ |
$170311680$ |
$4.144669$ |
$15417717183193579236304/3203400542783731875$ |
$0.98927$ |
$5.97403$ |
$[0, -1, 0, -951502540, -9044102917400]$ |
\(y^2=x^3-x^2-951502540x-9044102917400\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(35174601405/877, 4427780603800840/877)]$ |
225420.i2 |
225420v1 |
225420.i |
225420v |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{14} \cdot 5^{2} \cdot 13^{5} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$39.70291209$ |
$1$ |
|
$1$ |
$85155840$ |
$3.798096$ |
$207213650848585046032384/12830754016925325$ |
$1.05744$ |
$5.95989$ |
$[0, -1, 0, -897778885, -10353004558358]$ |
\(y^2=x^3-x^2-897778885x-10353004558358\) |
2.3.0.a.1, 26.6.0.b.1, 204.6.0.?, 2652.12.0.? |
$[(22147810002529103729/17441776, 93446473628313453701074581495/17441776)]$ |
225420.j1 |
225420w1 |
225420.j |
225420w |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{7} \cdot 13 \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$2.905412386$ |
$1$ |
|
$0$ |
$26229504$ |
$3.243637$ |
$-641825256562688/2221171875$ |
$0.97483$ |
$5.28532$ |
$[0, -1, 0, -56060605, 162061392025]$ |
\(y^2=x^3-x^2-56060605x+162061392025\) |
6630.2.0.? |
$[(38440/3, 614125/3)]$ |
225420.k1 |
225420x1 |
225420.k |
225420x |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{3} \cdot 13^{2} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$3.495430279$ |
$1$ |
|
$5$ |
$13271040$ |
$2.835461$ |
$11849035104552239104/2356219125$ |
$0.99191$ |
$5.16730$ |
$[0, -1, 0, -34587905, -78283543350]$ |
\(y^2=x^3-x^2-34587905x-78283543350\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.4, 136.12.0.?, 170.6.0.?, $\ldots$ |
$[(-3395, 115)]$ |
225420.k2 |
225420x2 |
225420.k |
225420x |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{6} \cdot 13^{4} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1.747715139$ |
$1$ |
|
$7$ |
$26542080$ |
$3.182034$ |
$-733071924285340624/10446632015625$ |
$0.94131$ |
$5.16844$ |
$[0, -1, 0, -34470860, -78839788008]$ |
\(y^2=x^3-x^2-34470860x-78839788008\) |
2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.2, 136.12.0.?, 340.12.0.?, $\ldots$ |
$[(8234, 442170)]$ |
225420.l1 |
225420y1 |
225420.l |
225420y |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{4} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$814080$ |
$1.429543$ |
$-412435709457152/34701615$ |
$0.93635$ |
$3.64486$ |
$[0, -1, 0, -66430, -6568523]$ |
\(y^2=x^3-x^2-66430x-6568523\) |
510.2.0.? |
$[ ]$ |
225420.m1 |
225420z2 |
225420.m |
225420z |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{15} \cdot 13 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$13260$ |
$16$ |
$0$ |
$2.900967323$ |
$1$ |
|
$8$ |
$2332800$ |
$2.026417$ |
$-550997245988944/3570556640625$ |
$0.95983$ |
$3.86635$ |
$[0, -1, 0, -71700, -25785000]$ |
\(y^2=x^3-x^2-71700x-25785000\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 260.2.0.?, 780.8.0.?, 13260.16.0.? |
$[(1025, 31250), (525, 9000)]$ |
225420.m2 |
225420z1 |
225420.m |
225420z |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{5} \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$13260$ |
$16$ |
$0$ |
$0.322329702$ |
$1$ |
|
$22$ |
$777600$ |
$1.477110$ |
$725768788016/5005040625$ |
$0.91584$ |
$3.31927$ |
$[0, -1, 0, 7860, 883512]$ |
\(y^2=x^3-x^2+7860x+883512\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 260.2.0.?, 780.8.0.?, 13260.16.0.? |
$[(-46, 650), (474, 10530)]$ |
225420.n1 |
225420ba1 |
225420.n |
225420ba |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6630$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2115072$ |
$1.852549$ |
$-1348129521664/29835$ |
$0.92838$ |
$4.09503$ |
$[0, -1, 0, -422325, 105780465]$ |
\(y^2=x^3-x^2-422325x+105780465\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 390.8.0.?, 6630.16.0.? |
$[ ]$ |
225420.n2 |
225420ba2 |
225420.n |
225420ba |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \cdot 13^{3} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6630$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6345216$ |
$2.401855$ |
$-54433153024/4047697875$ |
$1.00248$ |
$4.22923$ |
$[0, -1, 0, -144885, 241601217]$ |
\(y^2=x^3-x^2-144885x+241601217\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 390.8.0.?, 6630.16.0.? |
$[ ]$ |
225420.o1 |
225420bb1 |
225420.o |
225420bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 13^{4} \cdot 17^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.468393384$ |
$1$ |
|
$18$ |
$4147200$ |
$2.278130$ |
$88184857856/14748186375$ |
$0.93050$ |
$4.10828$ |
$[0, -1, 0, 67530, 114603057]$ |
\(y^2=x^3-x^2+67530x+114603057\) |
510.2.0.? |
$[(584, 18785), (142, 11271)]$ |
225420.p1 |
225420bc1 |
225420.p |
225420bc |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3290112$ |
$2.265858$ |
$18939904/7605$ |
$0.86843$ |
$4.10800$ |
$[0, -1, 0, -445445, -63166623]$ |
\(y^2=x^3-x^2-445445x-63166623\) |
10.2.0.a.1 |
$[ ]$ |
225420.q1 |
225420bd2 |
225420.q |
225420bd |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \cdot 13^{3} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6630$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1088640$ |
$1.739607$ |
$-4684079104/823875$ |
$0.93879$ |
$3.65717$ |
$[0, -1, 0, -63965, -7089063]$ |
\(y^2=x^3-x^2-63965x-7089063\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 390.8.0.?, 6630.16.0.? |
$[ ]$ |
225420.q2 |
225420bd1 |
225420.q |
225420bd |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6630$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$362880$ |
$1.190300$ |
$2809856/1755$ |
$0.89795$ |
$3.03375$ |
$[0, -1, 0, 5395, 41145]$ |
\(y^2=x^3-x^2+5395x+41145\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 390.8.0.?, 6630.16.0.? |
$[ ]$ |
225420.r1 |
225420be1 |
225420.r |
225420be |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$1.628623939$ |
$1$ |
|
$10$ |
$2878848$ |
$2.061947$ |
$-84398535376/585$ |
$0.84444$ |
$4.32995$ |
$[0, -1, 0, -1108700, 449706360]$ |
\(y^2=x^3-x^2-1108700x+449706360\) |
260.2.0.? |
$[(482, 5202), (15229/5, 8092/5)]$ |
225420.s1 |
225420bf1 |
225420.s |
225420bf |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{9} \cdot 13^{5} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$906837120$ |
$5.082848$ |
$-452867861533547663151376336/3468521306478515625$ |
$1.03374$ |
$7.26842$ |
$[0, -1, 0, -194100375340, -32914684500763688]$ |
\(y^2=x^3-x^2-194100375340x-32914684500763688\) |
260.2.0.? |
$[ ]$ |
225420.t1 |
225420bg1 |
225420.t |
225420bg |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{2} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$1.780179959$ |
$1$ |
|
$5$ |
$983040$ |
$1.551725$ |
$3718856704/2132325$ |
$1.07236$ |
$3.39198$ |
$[0, -1, 0, -23505, 140850]$ |
\(y^2=x^3-x^2-23505x+140850\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 136.12.0.?, $\ldots$ |
$[(-75, 1215)]$ |
225420.t2 |
225420bg2 |
225420.t |
225420bg |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$0.890089979$ |
$1$ |
|
$7$ |
$1966080$ |
$1.898298$ |
$14647977776/8555625$ |
$0.99143$ |
$3.72814$ |
$[0, -1, 0, 93540, 1030392]$ |
\(y^2=x^3-x^2+93540x+1030392\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 136.12.0.?, 520.24.0.?, $\ldots$ |
$[(74, 2890)]$ |
225420.u1 |
225420bh1 |
225420.u |
225420bh |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 13^{10} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$63060480$ |
$3.605896$ |
$-34172844524043008/18610896399615$ |
$1.09344$ |
$5.43619$ |
$[0, -1, 0, -83696230, 410637869605]$ |
\(y^2=x^3-x^2-83696230x+410637869605\) |
510.2.0.? |
$[ ]$ |
225420.v1 |
225420j1 |
225420.v |
225420j |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \cdot 13^{10} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.860896334$ |
$1$ |
|
$8$ |
$3709440$ |
$2.189289$ |
$-34172844524043008/18610896399615$ |
$1.09344$ |
$4.05702$ |
$[0, 1, 0, -289606, 83479685]$ |
\(y^2=x^3+x^2-289606x+83479685\) |
510.2.0.? |
$[(521, 8619), (1421/2, 40443/2)]$ |
225420.w1 |
225420k1 |
225420.w |
225420k |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{13} \cdot 5^{5} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7862400$ |
$2.632114$ |
$3186827264/64769371875$ |
$1.15762$ |
$4.45355$ |
$[0, 1, 0, 56259, -962487441]$ |
\(y^2=x^3+x^2+56259x-962487441\) |
390.2.0.? |
$[ ]$ |
225420.x1 |
225420l1 |
225420.x |
225420l |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{2} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2903040$ |
$2.064739$ |
$1725582942464/1008810855$ |
$0.92200$ |
$3.89011$ |
$[0, 1, 0, 181974, 3081789]$ |
\(y^2=x^3+x^2+181974x+3081789\) |
510.2.0.? |
$[ ]$ |
225420.y1 |
225420m1 |
225420.y |
225420m |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{9} \cdot 13^{5} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$13.00111711$ |
$1$ |
|
$0$ |
$53343360$ |
$3.666241$ |
$-452867861533547663151376336/3468521306478515625$ |
$1.03374$ |
$5.88925$ |
$[0, 1, 0, -671627596, -6699745390396]$ |
\(y^2=x^3+x^2-671627596x-6699745390396\) |
260.2.0.? |
$[(25382636/5, 127838710566/5)]$ |
225420.z1 |
225420n1 |
225420.z |
225420n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{2} \cdot 13^{5} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$520$ |
$48$ |
$0$ |
$3.070122080$ |
$1$ |
|
$7$ |
$141557760$ |
$4.097244$ |
$103157889656032577929216/33372791198022770325$ |
$1.03381$ |
$5.90330$ |
$[0, 1, 0, -711536881, -4851441653656]$ |
\(y^2=x^3+x^2-711536881x-4851441653656\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[(29795, 632043)]$ |
225420.z2 |
225420n2 |
225420.z |
225420n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 13^{10} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$520$ |
$48$ |
$0$ |
$6.140244161$ |
$1$ |
|
$5$ |
$283115520$ |
$4.443817$ |
$149359017613560984774704/163373427681970325625$ |
$1.00642$ |
$6.15827$ |
$[0, 1, 0, 2028369524, -33173306180860]$ |
\(y^2=x^3+x^2+2028369524x-33173306180860\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 52.12.0.d.1, 104.24.0.?, $\ldots$ |
$[(15056, 882606)]$ |
225420.ba1 |
225420o1 |
225420.ba |
225420o |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$260$ |
$2$ |
$0$ |
$0.853796536$ |
$1$ |
|
$2$ |
$169344$ |
$0.645342$ |
$-84398535376/585$ |
$0.84444$ |
$2.95078$ |
$[0, 1, 0, -3836, 90180]$ |
\(y^2=x^3+x^2-3836x+90180\) |
260.2.0.? |
$[(36, 6)]$ |
225420.bb1 |
225420p1 |
225420.bb |
225420p |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.342481575$ |
$1$ |
|
$6$ |
$193536$ |
$0.849252$ |
$18939904/7605$ |
$0.86843$ |
$2.72883$ |
$[0, 1, 0, -1541, -13401]$ |
\(y^2=x^3+x^2-1541x-13401\) |
10.2.0.a.1 |
$[(-23, 102)]$ |
225420.bc1 |
225420q1 |
225420.bc |
225420q |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{11} \cdot 5^{3} \cdot 13 \cdot 17^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$10.93273456$ |
$1$ |
|
$0$ |
$38776320$ |
$3.556202$ |
$-150528677004615417856/408725537965875$ |
$1.01351$ |
$5.59885$ |
$[0, 1, 0, -203365061, -1118936410761]$ |
\(y^2=x^3+x^2-203365061x-1118936410761\) |
6630.2.0.? |
$[(154382290/73, 1618250361291/73)]$ |
225420.bd1 |
225420r1 |
225420.bd |
225420r |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$26520$ |
$48$ |
$0$ |
$0.598836426$ |
$1$ |
|
$9$ |
$491520$ |
$1.361450$ |
$8077950976/26325$ |
$0.94883$ |
$3.45491$ |
$[0, 1, 0, -30441, 2028384]$ |
\(y^2=x^3+x^2-30441x+2028384\) |
2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 260.24.0.?, $\ldots$ |
$[(45, 867)]$ |
225420.bd2 |
225420r2 |
225420.bd |
225420r |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{4} \cdot 13^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$26520$ |
$48$ |
$0$ |
$1.197672852$ |
$1$ |
|
$7$ |
$983040$ |
$1.708023$ |
$-94875856/950625$ |
$0.90630$ |
$3.55518$ |
$[0, 1, 0, -17436, 3786660]$ |
\(y^2=x^3+x^2-17436x+3786660\) |
2.3.0.a.1, 4.6.0.a.1, 52.12.0.d.1, 408.12.0.?, 520.24.0.?, $\ldots$ |
$[(96, 1734)]$ |
225420.be1 |
225420s2 |
225420.be |
225420s |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{15} \cdot 13 \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$780$ |
$16$ |
$0$ |
$18.70981530$ |
$9$ |
$3$ |
$0$ |
$39657600$ |
$3.443024$ |
$-550997245988944/3570556640625$ |
$0.95983$ |
$5.24553$ |
$[0, 1, 0, -20721396, -126806033196]$ |
\(y^2=x^3+x^2-20721396x-126806033196\) |
3.8.0-3.a.1.1, 260.2.0.?, 780.16.0.? |
$[(84826019/115, 98598071922/115)]$ |
225420.be2 |
225420s1 |
225420.be |
225420s |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{5} \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$780$ |
$16$ |
$0$ |
$6.236605102$ |
$1$ |
|
$4$ |
$13219200$ |
$2.893719$ |
$725768788016/5005040625$ |
$0.91584$ |
$4.69844$ |
$[0, 1, 0, 2271444, 4354323300]$ |
\(y^2=x^3+x^2+2271444x+4354323300\) |
3.8.0-3.a.1.2, 260.2.0.?, 780.16.0.? |
$[(4236, 300006)]$ |
225420.bf1 |
225420t1 |
225420.bf |
225420t |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5 \cdot 13^{4} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13839360$ |
$2.846149$ |
$-412435709457152/34701615$ |
$0.93635$ |
$5.02403$ |
$[0, 1, 0, -19198366, -32386343515]$ |
\(y^2=x^3+x^2-19198366x-32386343515\) |
510.2.0.? |
$[ ]$ |
225420.bg1 |
225420u1 |
225420.bg |
225420u |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{7} \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6630$ |
$2$ |
$0$ |
$1.653120294$ |
$1$ |
|
$2$ |
$1542912$ |
$1.827028$ |
$-641825256562688/2221171875$ |
$0.97483$ |
$3.90615$ |
$[0, 1, 0, -193981, 32917775]$ |
\(y^2=x^3+x^2-193981x+32917775\) |
6630.2.0.? |
$[(266, 459)]$ |
225420.bh1 |
225420a1 |
225420.bh |
225420a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{3} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.156267948$ |
$1$ |
|
$26$ |
$580608$ |
$1.276369$ |
$5050365927424/138601125$ |
$0.92510$ |
$3.28274$ |
$[0, 1, 0, -15005, 685503]$ |
\(y^2=x^3+x^2-15005x+685503\) |
10.2.0.a.1 |
$[(-59, 1170), (61, 30)]$ |
225420.bi1 |
225420b1 |
225420.bi |
225420b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 13 \cdot 17^{10} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1560$ |
$48$ |
$0$ |
$3.233056811$ |
$1$ |
|
$15$ |
$13271040$ |
$2.915558$ |
$2064139491706322944/1374181453125$ |
$0.98408$ |
$5.02552$ |
$[0, 1, 0, -19317145, -32666168632]$ |
\(y^2=x^3+x^2-19317145x-32666168632\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[(-2539, 4335), (-2569, 3375)]$ |
225420.bi2 |
225420b2 |
225420.bi |
225420b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{12} \cdot 13^{2} \cdot 17^{8} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1560$ |
$48$ |
$0$ |
$3.233056811$ |
$1$ |
|
$13$ |
$26542080$ |
$3.262131$ |
$-67407802159923664/107316650390625$ |
$0.94569$ |
$5.08011$ |
$[0, 1, 0, -15558700, -45754577500]$ |
\(y^2=x^3+x^2-15558700x-45754577500\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 52.12.0.d.1, 312.24.0.?, $\ldots$ |
$[(24100, 3684750), (12200, 1257150)]$ |
225420.bj1 |
225420c1 |
225420.bj |
225420c |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 13^{3} \cdot 17^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$10616832$ |
$2.685673$ |
$36672690756665344/371578664925$ |
$0.96374$ |
$4.69852$ |
$[0, 1, 0, -5040545, -4319144700]$ |
\(y^2=x^3+x^2-5040545x-4319144700\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[ ]$ |