Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
22491.a1 |
22491x1 |
22491.a |
22491x |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{5} \cdot 7^{7} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$0.133341882$ |
$1$ |
|
$10$ |
$114048$ |
$1.538898$ |
$13545098489856/34391$ |
$0.96072$ |
$4.73068$ |
$[0, 0, 1, -151851, 22775800]$ |
\(y^2+y=x^3-151851x+22775800\) |
714.2.0.? |
$[(175, 1249)]$ |
22491.b1 |
22491w1 |
22491.b |
22491w |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.419789823$ |
$1$ |
|
$4$ |
$19008$ |
$0.536780$ |
$-242970624/17$ |
$1.34713$ |
$3.42085$ |
$[0, 0, 1, -1911, 32156]$ |
\(y^2+y=x^3-1911x+32156\) |
102.2.0.? |
$[(28, 24)]$ |
22491.c1 |
22491bj1 |
22491.c |
22491bj |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$714$ |
$12$ |
$1$ |
$1.039815100$ |
$1$ |
|
$4$ |
$169344$ |
$1.692732$ |
$13824000/4913$ |
$1.09864$ |
$4.37513$ |
$[0, 0, 1, -46305, 2382392]$ |
\(y^2+y=x^3-46305x+2382392\) |
3.3.0.a.1, 21.6.0.a.1, 102.6.0.?, 714.12.1.? |
$[(0, 1543)]$ |
22491.d1 |
22491v1 |
22491.d |
22491v |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 7^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$714$ |
$12$ |
$1$ |
$0.521122328$ |
$1$ |
|
$4$ |
$24192$ |
$0.719777$ |
$13824000/4913$ |
$1.09864$ |
$3.21002$ |
$[0, 0, 1, -945, -6946]$ |
\(y^2+y=x^3-945x-6946\) |
3.3.0.a.1, 21.6.0.a.1, 102.6.0.?, 714.12.1.? |
$[(-14, 59)]$ |
22491.e1 |
22491bo1 |
22491.e |
22491bo |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{12} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$895104$ |
$2.558903$ |
$34452489882636288/48275934539777$ |
$1.05797$ |
$5.32900$ |
$[0, 0, 1, 996513, 456478034]$ |
\(y^2+y=x^3+996513x+456478034\) |
102.2.0.? |
$[ ]$ |
22491.f1 |
22491bp1 |
22491.f |
22491bp |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{6} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22680$ |
$0.403516$ |
$110592/289$ |
$0.90890$ |
$2.77841$ |
$[0, 0, 1, 147, 1286]$ |
\(y^2+y=x^3+147x+1286\) |
6.2.0.a.1 |
$[ ]$ |
22491.g1 |
22491f1 |
22491.g |
22491f |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{7} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$0.154164148$ |
$1$ |
|
$22$ |
$23040$ |
$0.898095$ |
$-286331979/2023$ |
$0.83999$ |
$3.65770$ |
$[1, -1, 1, -4199, 106404]$ |
\(y^2+xy+y=x^3-x^2-4199x+106404\) |
84.2.0.? |
$[(44, 51), (191, 2403)]$ |
22491.h1 |
22491e1 |
22491.h |
22491e |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{7} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1741824$ |
$3.013187$ |
$-2444977514677360323/168962983$ |
$1.00740$ |
$6.59631$ |
$[1, -1, 1, -77236823, 261286417900]$ |
\(y^2+xy+y=x^3-x^2-77236823x+261286417900\) |
84.2.0.? |
$[ ]$ |
22491.i1 |
22491t1 |
22491.i |
22491t |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{3} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$0.289358229$ |
$1$ |
|
$6$ |
$10752$ |
$0.635219$ |
$-1042286781/83521$ |
$0.89772$ |
$3.21580$ |
$[1, -1, 1, -923, -11280]$ |
\(y^2+xy+y=x^3-x^2-923x-11280\) |
84.2.0.? |
$[(44, 156)]$ |
22491.j1 |
22491c1 |
22491.j |
22491c |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$0.712085$ |
$-27/17$ |
$0.99575$ |
$3.17855$ |
$[1, -1, 1, -83, -9530]$ |
\(y^2+xy+y=x^3-x^2-83x-9530\) |
102.2.0.? |
$[ ]$ |
22491.k1 |
22491d1 |
22491.k |
22491d |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.631235$ |
$-38034753147/99127$ |
$0.91493$ |
$4.58336$ |
$[1, -1, 1, -92693, -10863422]$ |
\(y^2+xy+y=x^3-x^2-92693x-10863422\) |
84.2.0.? |
$[ ]$ |
22491.l1 |
22491be1 |
22491.l |
22491be |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$1428$ |
$12$ |
$1$ |
$14.51414761$ |
$1$ |
|
$0$ |
$68544$ |
$1.613245$ |
$-602280721125/4913$ |
$0.97832$ |
$4.78332$ |
$[1, -1, 1, -181040, -29603864]$ |
\(y^2+xy+y=x^3-x^2-181040x-29603864\) |
3.3.0.a.1, 21.6.0.a.1, 204.6.0.?, 1428.12.1.? |
$[(36725147/46, 221642021267/46)]$ |
22491.m1 |
22491s1 |
22491.m |
22491s |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$1428$ |
$12$ |
$1$ |
$0.297303401$ |
$1$ |
|
$2$ |
$9792$ |
$0.640290$ |
$-602280721125/4913$ |
$0.97832$ |
$3.61821$ |
$[1, -1, 1, -3695, 87364]$ |
\(y^2+xy+y=x^3-x^2-3695x+87364\) |
3.3.0.a.1, 21.6.0.a.1, 204.6.0.?, 1428.12.1.? |
$[(23, 107)]$ |
22491.n1 |
22491bf1 |
22491.n |
22491bf |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1.483142276$ |
$1$ |
|
$4$ |
$75264$ |
$1.608173$ |
$-1042286781/83521$ |
$0.89772$ |
$4.38092$ |
$[1, -1, 1, -45212, 3959372]$ |
\(y^2+xy+y=x^3-x^2-45212x+3959372\) |
84.2.0.? |
$[(1360, 48883)]$ |
22491.o1 |
22491u1 |
22491.o |
22491u |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$4.531698918$ |
$1$ |
|
$0$ |
$508032$ |
$2.563408$ |
$-40001912784291/4046066759$ |
$0.95435$ |
$5.51262$ |
$[1, -1, 1, -1960769, -1144933730]$ |
\(y^2+xy+y=x^3-x^2-1960769x-1144933730\) |
1428.2.0.? |
$[(99955/6, 25986175/6)]$ |
22491.p1 |
22491bg1 |
22491.p |
22491bg |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$0.645636935$ |
$1$ |
|
$2$ |
$51840$ |
$1.203838$ |
$2803221/5831$ |
$0.82378$ |
$3.72848$ |
$[1, -1, 1, 3886, 149230]$ |
\(y^2+xy+y=x^3-x^2+3886x+149230\) |
1428.2.0.? |
$[(205, 2984)]$ |
22491.q1 |
22491bb1 |
22491.q |
22491bb |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{11} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$2.064410706$ |
$1$ |
|
$2$ |
$44928$ |
$1.102268$ |
$786432/119$ |
$0.78631$ |
$3.72577$ |
$[0, 0, 1, -5292, -127339]$ |
\(y^2+y=x^3-5292x-127339\) |
714.2.0.? |
$[(-35, 122)]$ |
22491.r1 |
22491ba1 |
22491.r |
22491ba |
$2$ |
$3$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$0.552834739$ |
$1$ |
|
$4$ |
$6480$ |
$0.277710$ |
$-884736/17$ |
$0.94133$ |
$2.86372$ |
$[0, 0, 1, -294, 1972]$ |
\(y^2+y=x^3-294x+1972\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 102.8.0.?, 714.16.0.? |
$[(14, 24)]$ |
22491.r2 |
22491ba2 |
22491.r |
22491ba |
$2$ |
$3$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$1.658504217$ |
$1$ |
|
$4$ |
$19440$ |
$0.827017$ |
$6291456/4913$ |
$1.15047$ |
$3.27549$ |
$[0, 0, 1, 1176, 9175]$ |
\(y^2+y=x^3+1176x+9175\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 102.8.0.?, 714.16.0.? |
$[(-7, 24)]$ |
22491.s1 |
22491k1 |
22491.s |
22491k |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{8} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.340821354$ |
$1$ |
|
$4$ |
$80640$ |
$1.620682$ |
$43153096704/69572993$ |
$1.04297$ |
$4.21485$ |
$[0, 0, 1, 22344, 1718001]$ |
\(y^2+y=x^3+22344x+1718001\) |
102.2.0.? |
$[(-7, 1249)]$ |
22491.t1 |
22491l1 |
22491.t |
22491l |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{16} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$5.162525222$ |
$1$ |
|
$0$ |
$149760$ |
$1.986305$ |
$-5786553778176/4802079233$ |
$0.99900$ |
$4.73458$ |
$[0, 0, 1, -114366, -23224959]$ |
\(y^2+y=x^3-114366x-23224959\) |
102.2.0.? |
$[(1673/2, 11609/2)]$ |
22491.u1 |
22491a3 |
22491.u |
22491a |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 7^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.6 |
3B |
$2142$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$715392$ |
$2.801891$ |
$22759502184972288000/5831$ |
$1.21885$ |
$6.59967$ |
$[0, 0, 1, -78109920, 265709696348]$ |
\(y^2+y=x^3-78109920x+265709696348\) |
3.4.0.a.1, 9.36.0.e.1, 21.8.0-3.a.1.2, 63.72.0-9.e.1.2, 102.8.0.?, $\ldots$ |
$[ ]$ |
22491.u2 |
22491a2 |
22491.u |
22491a |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{5} \cdot 7^{9} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.6 |
3B |
$2142$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$715392$ |
$2.801891$ |
$838870874148864000/40675641638471$ |
$1.12328$ |
$5.83176$ |
$[0, 0, 1, -6007890, -5425365542]$ |
\(y^2+y=x^3-6007890x-5425365542\) |
3.4.0.a.1, 9.36.0.e.1, 21.8.0-3.a.1.1, 63.72.0-9.e.1.1, 102.8.0.?, $\ldots$ |
$[ ]$ |
22491.u3 |
22491a1 |
22491.u |
22491a |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 7^{15} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$238464$ |
$2.252586$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.28454$ |
$[0, 0, 1, -965790, 363318205]$ |
\(y^2+y=x^3-965790x+363318205\) |
3.12.0.a.1, 9.36.0.c.1, 21.24.0-3.a.1.1, 63.72.0-9.c.1.1, 102.24.0.?, $\ldots$ |
$[ ]$ |
22491.v1 |
22491j3 |
22491.v |
22491j |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{11} \cdot 7^{9} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.6 |
3B |
$2142$ |
$144$ |
$3$ |
$1.375386378$ |
$1$ |
|
$2$ |
$2146176$ |
$3.351196$ |
$838870874148864000/40675641638471$ |
$1.12328$ |
$6.48956$ |
$[0, 0, 1, -54071010, 146484869627]$ |
\(y^2+y=x^3-54071010x+146484869627\) |
3.4.0.a.1, 9.36.0.e.1, 21.8.0-3.a.1.2, 63.72.0-9.e.1.2, 102.8.0.?, $\ldots$ |
$[(-3815, 545198)]$ |
22491.v2 |
22491j2 |
22491.v |
22491j |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 7^{15} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.3 |
3Cs |
$2142$ |
$144$ |
$3$ |
$4.126159135$ |
$1$ |
|
$0$ |
$715392$ |
$2.801891$ |
$31363160518656000/198257271191$ |
$1.10096$ |
$5.94234$ |
$[0, 0, 1, -8692110, -9809591542]$ |
\(y^2+y=x^3-8692110x-9809591542\) |
3.12.0.a.1, 9.36.0.c.1, 21.24.0-3.a.1.1, 63.72.0-9.c.1.1, 102.24.0.?, $\ldots$ |
$[(-362054/15, 10998494/15)]$ |
22491.v3 |
22491j1 |
22491.v |
22491j |
$3$ |
$9$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.6 |
3B |
$2142$ |
$144$ |
$3$ |
$12.37847740$ |
$1$ |
|
$0$ |
$238464$ |
$2.252586$ |
$22759502184972288000/5831$ |
$1.21885$ |
$5.94188$ |
$[0, 0, 1, -8678880, -9841099865]$ |
\(y^2+y=x^3-8678880x-9841099865\) |
3.4.0.a.1, 9.36.0.e.1, 21.8.0-3.a.1.1, 63.72.0-9.e.1.1, 102.8.0.?, $\ldots$ |
$[(-4715195051/1665, -2095376293/1665)]$ |
22491.w1 |
22491z1 |
22491.w |
22491z |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{16} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$13.51468109$ |
$1$ |
|
$0$ |
$449280$ |
$2.535610$ |
$-5786553778176/4802079233$ |
$0.99900$ |
$5.39238$ |
$[0, 0, 1, -1029294, 627073886]$ |
\(y^2+y=x^3-1029294x+627073886\) |
102.2.0.? |
$[(2953342/67, 4607157306/67)]$ |
22491.x1 |
22491y1 |
22491.x |
22491y |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{8} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$18.07548382$ |
$1$ |
|
$0$ |
$241920$ |
$2.169987$ |
$43153096704/69572993$ |
$1.04297$ |
$4.87265$ |
$[0, 0, 1, 201096, -46386034]$ |
\(y^2+y=x^3+201096x-46386034\) |
102.2.0.? |
$[(309070678/773, 6466522139914/773)]$ |
22491.y1 |
22491m1 |
22491.y |
22491m |
$2$ |
$3$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$8.190049110$ |
$1$ |
|
$0$ |
$19440$ |
$0.827017$ |
$-884736/17$ |
$0.94133$ |
$3.52152$ |
$[0, 0, 1, -2646, -53251]$ |
\(y^2+y=x^3-2646x-53251\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 102.8.0.?, 714.16.0.? |
$[(18529/15, 1807417/15)]$ |
22491.y2 |
22491m2 |
22491.y |
22491m |
$2$ |
$3$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$2.730016370$ |
$1$ |
|
$2$ |
$58320$ |
$1.376324$ |
$6291456/4913$ |
$1.15047$ |
$3.93328$ |
$[0, 0, 1, 10584, -247732]$ |
\(y^2+y=x^3+10584x-247732\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 102.8.0.?, 714.16.0.? |
$[(658, 17076)]$ |
22491.z1 |
22491bk1 |
22491.z |
22491bk |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{5} \cdot 7^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14976$ |
$0.552961$ |
$786432/119$ |
$0.78631$ |
$3.06798$ |
$[0, 0, 1, -588, 4716]$ |
\(y^2+y=x^3-588x+4716\) |
714.2.0.? |
$[ ]$ |
22491.ba1 |
22491q1 |
22491.ba |
22491q |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$1.485564265$ |
$1$ |
|
$0$ |
$17280$ |
$0.654532$ |
$2803221/5831$ |
$0.82378$ |
$3.07069$ |
$[1, -1, 0, 432, -5671]$ |
\(y^2+xy=x^3-x^2+432x-5671\) |
1428.2.0.? |
$[(71/2, 615/2)]$ |
22491.bb1 |
22491bd1 |
22491.bb |
22491bd |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{13} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$3.723395805$ |
$1$ |
|
$0$ |
$169344$ |
$2.014103$ |
$-40001912784291/4046066759$ |
$0.95435$ |
$4.85482$ |
$[1, -1, 0, -217863, 42477574]$ |
\(y^2+xy=x^3-x^2-217863x+42477574\) |
1428.2.0.? |
$[(8229/4, 504559/4)]$ |
22491.bc1 |
22491bm1 |
22491.bc |
22491bm |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$225792$ |
$2.157478$ |
$-1042286781/83521$ |
$0.89772$ |
$5.03871$ |
$[1, -1, 0, -406905, -106496146]$ |
\(y^2+xy=x^3-x^2-406905x-106496146\) |
84.2.0.? |
$[ ]$ |
22491.bd1 |
22491bc1 |
22491.bd |
22491bc |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$1428$ |
$12$ |
$1$ |
$5.192264514$ |
$1$ |
|
$0$ |
$29376$ |
$1.189596$ |
$-602280721125/4913$ |
$0.97832$ |
$4.27600$ |
$[1, -1, 0, -33252, -2325583]$ |
\(y^2+xy=x^3-x^2-33252x-2325583\) |
3.3.0.a.1, 21.6.0.a.1, 204.6.0.?, 1428.12.1.? |
$[(1639/2, 56447/2)]$ |
22491.be1 |
22491n1 |
22491.be |
22491n |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$1428$ |
$12$ |
$1$ |
$2.418563178$ |
$1$ |
|
$0$ |
$205632$ |
$2.162552$ |
$-602280721125/4913$ |
$0.97832$ |
$5.44111$ |
$[1, -1, 0, -1629357, 800933678]$ |
\(y^2+xy=x^3-x^2-1629357x+800933678\) |
3.3.0.a.1, 21.6.0.a.1, 204.6.0.?, 1428.12.1.? |
$[(11813/4, -17795/4)]$ |
22491.bf1 |
22491o1 |
22491.bf |
22491o |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1.656888451$ |
$1$ |
|
$2$ |
$27648$ |
$1.081930$ |
$-38034753147/99127$ |
$0.91493$ |
$3.92556$ |
$[1, -1, 0, -10299, 405782]$ |
\(y^2+xy=x^3-x^2-10299x+405782\) |
84.2.0.? |
$[(-82, 874)]$ |
22491.bg1 |
22491bl1 |
22491.bg |
22491bl |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 7^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4320$ |
$0.162779$ |
$-27/17$ |
$0.99575$ |
$2.52075$ |
$[1, -1, 0, -9, 356]$ |
\(y^2+xy=x^3-x^2-9x+356\) |
102.2.0.? |
$[ ]$ |
22491.bh1 |
22491b1 |
22491.bh |
22491b |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{3} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$32256$ |
$1.184525$ |
$-1042286781/83521$ |
$0.89772$ |
$3.87360$ |
$[1, -1, 0, -8304, 312857]$ |
\(y^2+xy=x^3-x^2-8304x+312857\) |
84.2.0.? |
$[ ]$ |
22491.bi1 |
22491p1 |
22491.bi |
22491p |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{5} \cdot 7^{7} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$4.416392370$ |
$1$ |
|
$2$ |
$580608$ |
$2.463882$ |
$-2444977514677360323/168962983$ |
$1.00740$ |
$5.93852$ |
$[1, -1, 0, -8581869, -9674414114]$ |
\(y^2+xy=x^3-x^2-8581869x-9674414114\) |
84.2.0.? |
$[(11090, 1116506)]$ |
22491.bj1 |
22491r1 |
22491.bj |
22491r |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$84$ |
$2$ |
$0$ |
$5.611017238$ |
$1$ |
|
$0$ |
$69120$ |
$1.447401$ |
$-286331979/2023$ |
$0.83999$ |
$4.31549$ |
$[1, -1, 0, -37788, -2835127]$ |
\(y^2+xy=x^3-x^2-37788x-2835127\) |
84.2.0.? |
$[(2104/3, 24725/3)]$ |
22491.bk1 |
22491bi1 |
22491.bk |
22491bi |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$2.426265290$ |
$1$ |
|
$0$ |
$68040$ |
$0.952822$ |
$110592/289$ |
$0.90890$ |
$3.43621$ |
$[0, 0, 1, 1323, -34729]$ |
\(y^2+y=x^3+1323x-34729\) |
6.2.0.a.1 |
$[(81/2, 149/2)]$ |
22491.bl1 |
22491h1 |
22491.bl |
22491h |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{12} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$2685312$ |
$3.108208$ |
$34452489882636288/48275934539777$ |
$1.05797$ |
$5.98680$ |
$[0, 0, 1, 8968617, -12324906925]$ |
\(y^2+y=x^3+8968617x-12324906925\) |
102.2.0.? |
$[ ]$ |
22491.bm1 |
22491g1 |
22491.bm |
22491g |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 7^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$714$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$0.170471$ |
$13824000/4913$ |
$1.09864$ |
$2.55222$ |
$[0, 0, 1, -105, 257]$ |
\(y^2+y=x^3-105x+257\) |
3.3.0.a.1, 21.6.0.a.1, 102.6.0.?, 714.12.1.? |
$[ ]$ |
22491.bn1 |
22491bn1 |
22491.bn |
22491bn |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 7^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$714$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$56448$ |
$1.143425$ |
$13824000/4913$ |
$1.09864$ |
$3.71734$ |
$[0, 0, 1, -5145, -88237]$ |
\(y^2+y=x^3-5145x-88237\) |
3.3.0.a.1, 21.6.0.a.1, 102.6.0.?, 714.12.1.? |
$[ ]$ |
22491.bo1 |
22491bh1 |
22491.bo |
22491bh |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$9.353665246$ |
$1$ |
|
$0$ |
$57024$ |
$1.086086$ |
$-242970624/17$ |
$1.34713$ |
$4.07864$ |
$[0, 0, 1, -17199, -868219]$ |
\(y^2+y=x^3-17199x-868219\) |
102.2.0.? |
$[(262017/34, 103057483/34)]$ |
22491.bp1 |
22491i1 |
22491.bp |
22491i |
$1$ |
$1$ |
\( 3^{3} \cdot 7^{2} \cdot 17 \) |
\( 3^{11} \cdot 7^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$342144$ |
$2.088207$ |
$13545098489856/34391$ |
$0.96072$ |
$5.38848$ |
$[0, 0, 1, -1366659, -614946607]$ |
\(y^2+y=x^3-1366659x-614946607\) |
714.2.0.? |
$[ ]$ |