Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
213712.a1 |
213712a1 |
213712.a |
213712a |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{27} \cdot 19^{11} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$62208000$ |
$3.539547$ |
$-186688297520577/111076295671808$ |
$1.04874$ |
$5.36011$ |
$[0, 0, 0, -6877411, 222700248034]$ |
\(y^2=x^3-6877411x+222700248034\) |
152.2.0.? |
$[ ]$ |
213712.b1 |
213712b1 |
213712.b |
213712b |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{12} \cdot 19^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576000$ |
$1.168825$ |
$110592/37$ |
$0.76978$ |
$3.06363$ |
$[0, 0, 0, -5776, 109744]$ |
\(y^2=x^3-5776x+109744\) |
74.2.0.? |
$[ ]$ |
213712.c1 |
213712c1 |
213712.c |
213712c |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{21} \cdot 19^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$2.973772379$ |
$1$ |
|
$2$ |
$4596480$ |
$2.414051$ |
$36264691/18944$ |
$0.86105$ |
$4.25541$ |
$[0, 1, 0, -756776, -79304012]$ |
\(y^2=x^3+x^2-756776x-79304012\) |
5624.2.0.? |
$[(1203, 27436)]$ |
213712.d1 |
213712d1 |
213712.d |
213712d |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{15} \cdot 19^{3} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$7.848928116$ |
$1$ |
|
$0$ |
$656640$ |
$1.395041$ |
$7784759730259/296$ |
$0.93902$ |
$3.81623$ |
$[0, 1, 0, -125520, -17158508]$ |
\(y^2=x^3+x^2-125520x-17158508\) |
5624.2.0.? |
$[(-172284/29, 9602/29)]$ |
213712.e1 |
213712bf1 |
213712.e |
213712bf |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{11} \cdot 19^{7} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2280960$ |
$2.090412$ |
$143256979154/962407$ |
$0.85686$ |
$4.15397$ |
$[0, 1, 0, -499744, 135020244]$ |
\(y^2=x^3+x^2-499744x+135020244\) |
5624.2.0.? |
$[ ]$ |
213712.f1 |
213712e2 |
213712.f |
213712e |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{15} \cdot 19^{9} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$3.653006256$ |
$1$ |
|
$3$ |
$14336640$ |
$2.582085$ |
$8132727331/10952$ |
$0.88140$ |
$4.69647$ |
$[0, 1, 0, -4597816, 3788733012]$ |
\(y^2=x^3+x^2-4597816x+3788733012\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 2812.6.0.?, 5624.12.0.? |
$[(278, 50320)]$ |
213712.f2 |
213712e1 |
213712.f |
213712e |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{18} \cdot 19^{9} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$7.306012512$ |
$1$ |
|
$1$ |
$7168320$ |
$2.235512$ |
$-753571/2368$ |
$0.80668$ |
$4.09140$ |
$[0, 1, 0, -208056, 92555092]$ |
\(y^2=x^3+x^2-208056x+92555092\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 1406.6.0.?, 5624.12.0.? |
$[(3446/5, 1019456/5)]$ |
213712.g1 |
213712f1 |
213712.g |
213712f |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{8} \cdot 19^{2} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$86400$ |
$0.109764$ |
$-9056464/37$ |
$0.71999$ |
$2.23755$ |
$[0, 1, 0, -196, -1128]$ |
\(y^2=x^3+x^2-196x-1128\) |
148.2.0.? |
$[ ]$ |
213712.h1 |
213712g1 |
213712.h |
213712g |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{8} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1.052278785$ |
$1$ |
|
$4$ |
$342144$ |
$0.925254$ |
$65536/37$ |
$0.98850$ |
$2.79507$ |
$[0, -1, 0, -1925, -4439]$ |
\(y^2=x^3-x^2-1925x-4439\) |
74.2.0.? |
$[(89, 722)]$ |
213712.i1 |
213712h1 |
213712.i |
213712h |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{4} \cdot 19^{10} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$2812$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2134080$ |
$2.050323$ |
$31698688/1369$ |
$0.78003$ |
$4.03253$ |
$[0, -1, 0, -304082, -61984529]$ |
\(y^2=x^3-x^2-304082x-61984529\) |
2.2.0.a.1, 38.6.0.a.1, 2812.12.0.? |
$[ ]$ |
213712.j1 |
213712i1 |
213712.j |
213712i |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{19} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.205837007$ |
$1$ |
|
$0$ |
$1935360$ |
$2.168701$ |
$-49552182217/3329408$ |
$0.85521$ |
$4.13290$ |
$[0, -1, 0, -441984, -119336960]$ |
\(y^2=x^3-x^2-441984x-119336960\) |
152.2.0.? |
$[(10624/3, 854848/3)]$ |
213712.k1 |
213712bg1 |
213712.k |
213712bg |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{8} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1.515655223$ |
$1$ |
|
$2$ |
$193536$ |
$0.969979$ |
$351232/37$ |
$0.74527$ |
$2.93187$ |
$[0, -1, 0, -3369, 69205]$ |
\(y^2=x^3-x^2-3369x+69205\) |
74.2.0.? |
$[(-44, 361)]$ |
213712.l1 |
213712j1 |
213712.l |
213712j |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{21} \cdot 19^{9} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15759360$ |
$3.307499$ |
$221774710877/959570432$ |
$0.95121$ |
$5.11806$ |
$[0, -1, 0, 13839176, -50434679440]$ |
\(y^2=x^3-x^2+13839176x-50434679440\) |
152.2.0.? |
$[ ]$ |
213712.m1 |
213712bh1 |
213712.m |
213712bh |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{8} \cdot 19^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$228096$ |
$1.116053$ |
$16000000/37$ |
$0.93985$ |
$3.24305$ |
$[0, -1, 0, -12033, 511069]$ |
\(y^2=x^3-x^2-12033x+511069\) |
74.2.0.? |
$[ ]$ |
213712.n1 |
213712k1 |
213712.n |
213712k |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{27} \cdot 19^{3} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1843200$ |
$2.178909$ |
$906196171733/61412507648$ |
$1.00310$ |
$4.02840$ |
$[0, -1, 0, 61288, -62947088]$ |
\(y^2=x^3-x^2+61288x-62947088\) |
152.2.0.? |
$[ ]$ |
213712.o1 |
213712l1 |
213712.o |
213712l |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{8} \cdot 19^{10} \cdot 37^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4147200$ |
$2.514683$ |
$15207071653888/6601149613$ |
$0.94004$ |
$4.36464$ |
$[0, -1, 0, -1183117, 248008337]$ |
\(y^2=x^3-x^2-1183117x+248008337\) |
74.2.0.? |
$[ ]$ |
213712.p1 |
213712m1 |
213712.p |
213712m |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{13} \cdot 19^{9} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$2.526612985$ |
$1$ |
|
$2$ |
$2488320$ |
$2.248009$ |
$18884848247/18779942$ |
$0.86750$ |
$4.04534$ |
$[0, -1, 0, 320448, 59072128]$ |
\(y^2=x^3-x^2+320448x+59072128\) |
152.2.0.? |
$[(6568, 534280)]$ |
213712.q1 |
213712n1 |
213712.q |
213712n |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{12} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.247318809$ |
$1$ |
|
$0$ |
$806400$ |
$1.691755$ |
$110592/26011$ |
$0.86293$ |
$3.55293$ |
$[0, 0, 0, 5776, -3402064]$ |
\(y^2=x^3+5776x-3402064\) |
38.2.0.a.1 |
$[(1273/3, 13357/3)]$ |
213712.r1 |
213712o1 |
213712.r |
213712o |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{18} \cdot 19^{4} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$326592$ |
$1.046989$ |
$-12973257/2368$ |
$0.98369$ |
$2.99437$ |
$[0, 0, 0, -3971, 110466]$ |
\(y^2=x^3-3971x+110466\) |
148.2.0.? |
$[ ]$ |
213712.s1 |
213712p1 |
213712.s |
213712p |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{18} \cdot 19^{10} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$6205248$ |
$2.519211$ |
$-12973257/2368$ |
$0.98369$ |
$4.43391$ |
$[0, 0, 0, -1433531, -757686294]$ |
\(y^2=x^3-1433531x-757686294\) |
148.2.0.? |
$[ ]$ |
213712.t1 |
213712q1 |
213712.t |
213712q |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{15} \cdot 19^{7} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$1.605589$ |
$33076161/5624$ |
$0.76994$ |
$3.52814$ |
$[0, 0, 0, -38627, 2455522]$ |
\(y^2=x^3-38627x+2455522\) |
5624.2.0.? |
$[ ]$ |
213712.u1 |
213712r1 |
213712.u |
213712r |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{4} \cdot 19^{4} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$2812$ |
$12$ |
$0$ |
$1.149158606$ |
$1$ |
|
$6$ |
$112320$ |
$0.578104$ |
$31698688/1369$ |
$0.78003$ |
$2.59299$ |
$[0, 1, 0, -842, 8771]$ |
\(y^2=x^3+x^2-842x+8771\) |
2.2.0.a.1, 38.6.0.a.1, 148.4.0.?, 2812.12.0.? |
$[(5/2, 703/2), (187/3, 703/3)]$ |
213712.v1 |
213712s1 |
213712.v |
213712s |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{8} \cdot 19^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.547417$ |
$1438646272/13357$ |
$0.90288$ |
$3.60963$ |
$[0, 1, 0, -53909, 4760975]$ |
\(y^2=x^3+x^2-53909x+4760975\) |
74.2.0.? |
$[ ]$ |
213712.w1 |
213712t1 |
213712.w |
213712t |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{21} \cdot 19^{3} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.833965228$ |
$1$ |
|
$4$ |
$829440$ |
$1.835278$ |
$221774710877/959570432$ |
$0.95121$ |
$3.67852$ |
$[0, 1, 0, 38336, 7365172]$ |
\(y^2=x^3+x^2+38336x+7365172\) |
152.2.0.? |
$[(-108, 1406)]$ |
213712.x1 |
213712u1 |
213712.x |
213712u |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{19} \cdot 19^{7} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$2.101841$ |
$-761048497/3329408$ |
$0.85394$ |
$3.95862$ |
$[0, 1, 0, -109864, -41043788]$ |
\(y^2=x^3+x^2-109864x-41043788\) |
152.2.0.? |
$[ ]$ |
213712.y1 |
213712v1 |
213712.y |
213712v |
$2$ |
$3$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{15} \cdot 19^{9} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$1.683288963$ |
$1$ |
|
$4$ |
$4976640$ |
$2.414070$ |
$-677993136625/75119768$ |
$0.88055$ |
$4.35139$ |
$[0, 1, 0, -1057128, 456292916]$ |
\(y^2=x^3+x^2-1057128x+456292916\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 152.2.0.?, 228.8.0.?, 456.16.0.? |
$[(-260, 26714)]$ |
213712.y2 |
213712v2 |
213712.y |
213712v |
$2$ |
$3$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{13} \cdot 19^{7} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$5.049866889$ |
$1$ |
|
$0$ |
$14929920$ |
$2.963375$ |
$166874624291375/97497603542$ |
$1.05957$ |
$4.78576$ |
$[0, 1, 0, 6624952, -640708108]$ |
\(y^2=x^3+x^2+6624952x-640708108\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 152.2.0.?, 228.8.0.?, 456.16.0.? |
$[(986956/15, 1133715446/15)]$ |
213712.z1 |
213712w3 |
213712.z |
213712w |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{12} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$75924$ |
$1296$ |
$43$ |
$53.85212512$ |
$1$ |
|
$0$ |
$3079296$ |
$2.387447$ |
$727057727488000/37$ |
$1.08598$ |
$4.90568$ |
$[0, 1, 0, -10820373, -13703320189]$ |
\(y^2=x^3+x^2-10820373x-13703320189\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 222.8.0.?, $\ldots$ |
$[(-814090564511192164547648591/654661888392, 129645962229769695456737293038097655/654661888392)]$ |
213712.z2 |
213712w2 |
213712.z |
213712w |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{12} \cdot 19^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$75924$ |
$1296$ |
$43$ |
$17.95070837$ |
$1$ |
|
$0$ |
$1026432$ |
$1.838142$ |
$1404928000/50653$ |
$0.97274$ |
$3.83362$ |
$[0, 1, 0, -134773, -18485981]$ |
\(y^2=x^3+x^2-134773x-18485981\) |
3.12.0.a.1, 9.36.0.b.1, 74.2.0.?, 222.24.1.?, 228.24.0.?, $\ldots$ |
$[(-1163660087/2472, 8401889522395/2472)]$ |
213712.z3 |
213712w1 |
213712.z |
213712w |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{12} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$75924$ |
$1296$ |
$43$ |
$5.983569458$ |
$1$ |
|
$0$ |
$342144$ |
$1.288836$ |
$4096000/37$ |
$0.88268$ |
$3.35794$ |
$[0, 1, 0, -19253, 1013795]$ |
\(y^2=x^3+x^2-19253x+1013795\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 222.8.0.?, $\ldots$ |
$[(593/8, 468217/8)]$ |
213712.ba1 |
213712x1 |
213712.ba |
213712x |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{27} \cdot 19^{9} \cdot 37^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$6.475306445$ |
$1$ |
|
$2$ |
$35020800$ |
$3.651131$ |
$906196171733/61412507648$ |
$1.00310$ |
$5.46795$ |
$[0, 1, 0, 22124848, 431621327252]$ |
\(y^2=x^3+x^2+22124848x+431621327252\) |
152.2.0.? |
$[(519074, 373992448)]$ |
213712.bb1 |
213712y1 |
213712.bb |
213712y |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{29} \cdot 19^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$34.84627876$ |
$1$ |
|
$0$ |
$10575360$ |
$2.957504$ |
$1007488615738249/33263845376$ |
$0.93101$ |
$4.93226$ |
$[0, -1, 0, -12063296, -15655945216]$ |
\(y^2=x^3-x^2-12063296x-15655945216\) |
5624.2.0.? |
$[(-3092836333499678/1214651, 36542811305282851910394/1214651)]$ |
213712.bc1 |
213712z1 |
213712.bc |
213712z |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{21} \cdot 19^{3} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$0.941832$ |
$36264691/18944$ |
$0.86105$ |
$2.81587$ |
$[0, -1, 0, -2096, 12224]$ |
\(y^2=x^3-x^2-2096x+12224\) |
5624.2.0.? |
$[ ]$ |
213712.bd1 |
213712ba1 |
213712.bd |
213712ba |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{15} \cdot 19^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$12476160$ |
$2.867260$ |
$7784759730259/296$ |
$0.93902$ |
$5.25578$ |
$[0, -1, 0, -45312840, 117418329584]$ |
\(y^2=x^3-x^2-45312840x+117418329584\) |
5624.2.0.? |
$[ ]$ |
213712.be1 |
213712bb1 |
213712.be |
213712bb |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{17} \cdot 19^{11} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5624$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$12096000$ |
$2.714157$ |
$25601949246817/2931701216$ |
$0.90899$ |
$4.63301$ |
$[0, -1, 0, -3546584, -2301238288]$ |
\(y^2=x^3-x^2-3546584x-2301238288\) |
5624.2.0.? |
$[ ]$ |
213712.bf1 |
213712bi1 |
213712.bf |
213712bi |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{8} \cdot 19^{9} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$14100480$ |
$2.795467$ |
$-13386279925445632/12854870299$ |
$0.94481$ |
$4.91726$ |
$[0, -1, 0, -11338769, -14704335859]$ |
\(y^2=x^3-x^2-11338769x-14704335859\) |
38.2.0.a.1 |
$[ ]$ |
213712.bg1 |
213712bc2 |
213712.bg |
213712bc |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{15} \cdot 19^{3} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$754560$ |
$1.109865$ |
$8132727331/10952$ |
$0.88140$ |
$3.25693$ |
$[0, -1, 0, -12736, -548352]$ |
\(y^2=x^3-x^2-12736x-548352\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 2812.6.0.?, 5624.12.0.? |
$[ ]$ |
213712.bg2 |
213712bc1 |
213712.bg |
213712bc |
$2$ |
$2$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{18} \cdot 19^{3} \cdot 37 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5624$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$377280$ |
$0.763291$ |
$-753571/2368$ |
$0.80668$ |
$2.65186$ |
$[0, -1, 0, -576, -13312]$ |
\(y^2=x^3-x^2-576x-13312\) |
2.3.0.a.1, 152.6.0.?, 296.6.0.?, 1406.6.0.?, 5624.12.0.? |
$[ ]$ |
213712.bh1 |
213712bd1 |
213712.bh |
213712bd |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( - 2^{8} \cdot 19^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1641600$ |
$1.581984$ |
$-9056464/37$ |
$0.71999$ |
$3.67709$ |
$[0, -1, 0, -70876, 7311948]$ |
\(y^2=x^3-x^2-70876x+7311948\) |
148.2.0.? |
$[ ]$ |
213712.bi1 |
213712be1 |
213712.bi |
213712be |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 37 \) |
\( 2^{12} \cdot 19^{8} \cdot 37^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18662400$ |
$2.850555$ |
$44091731607552/25033168477$ |
$1.20826$ |
$4.67731$ |
$[0, 0, 0, -4251136, 464107376]$ |
\(y^2=x^3-4251136x+464107376\) |
74.2.0.? |
$[ ]$ |