Learn more

Refine search


Results (1-50 of 162 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
209814.a1 209814.a \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $7.112710587$ $[1, 1, 0, -6854652, 6900354960]$ \(y^2+xy=x^3+x^2-6854652x+6900354960\) 2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? $[(1463, 1725), (6376, 468460)]$
209814.a2 209814.a \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $7.112710587$ $[1, 1, 0, -5455892, 9799984440]$ \(y^2+xy=x^3+x^2-5455892x+9799984440\) 2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? $[(-2821, 53864), (9895, 956700)]$
209814.b1 209814.b \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -210542, -317246640]$ \(y^2+xy=x^3+x^2-210542x-317246640\) 6.2.0.a.1 $[ ]$
209814.c1 209814.c \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 3708601598, -4373222750173460]$ \(y^2+xy=x^3+x^2+3708601598x-4373222750173460\) 408.2.0.? $[ ]$
209814.d1 209814.d \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $16.43133272$ $[1, 1, 0, -6365086, -6183296390]$ \(y^2+xy=x^3+x^2-6365086x-6183296390\) 2.3.0.a.1, 132.6.0.?, 136.6.0.?, 4488.12.0.? $[(-1457, 184), (15241, 1846402)]$
209814.d2 209814.d \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $2$ $\Z/2\Z$ $4.107833180$ $[1, 1, 0, -420356, -85192356]$ \(y^2+xy=x^3+x^2-420356x-85192356\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(919, 17025), (-11994/5, 344706/5)]$
209814.e1 209814.e \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $1.473666850$ $[1, 1, 0, 1329, 183429]$ \(y^2+xy=x^3+x^2+1329x+183429\) 88.2.0.? $[(39, 525), (281, 4639)]$
209814.f1 209814.f \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $20.68639030$ $[1, 1, 0, -61441261, -180386090705]$ \(y^2+xy=x^3+x^2-61441261x-180386090705\) 24.2.0.a.1 $[(-49683904287/3203, 2054916287980060/3203)]$
209814.g1 209814.g \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -566805021, -5195853212931]$ \(y^2+xy=x^3+x^2-566805021x-5195853212931\) 6.2.0.a.1 $[ ]$
209814.h1 209814.h \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -49105114071, 4188283572076245]$ \(y^2+xy=x^3+x^2-49105114071x+4188283572076245\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 44.12.0-4.c.1.1, 88.24.0.?, $\ldots$ $[ ]$
209814.h2 209814.h \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -3069124951, 65438494456405]$ \(y^2+xy=x^3+x^2-3069124951x+65438494456405\) 2.6.0.a.1, 8.12.0.b.1, 44.12.0-2.a.1.1, 68.12.0.b.1, 88.24.0.?, $\ldots$ $[ ]$
209814.h3 209814.h \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2867703511, 74398646646229]$ \(y^2+xy=x^3+x^2-2867703511x+74398646646229\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 88.24.0.?, 136.24.0.?, $\ldots$ $[ ]$
209814.h4 209814.h \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -204464471, 879932947029]$ \(y^2+xy=x^3+x^2-204464471x+879932947029\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 34.6.0.a.1, 44.12.0-4.c.1.2, $\ldots$ $[ ]$
209814.i1 209814.i \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -8742978, -10001001996]$ \(y^2+xy=x^3+x^2-8742978x-10001001996\) 136.2.0.? $[ ]$
209814.j1 209814.j \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 5630, 418114]$ \(y^2+xy=x^3+x^2+5630x+418114\) 408.2.0.? $[ ]$
209814.k1 209814.k \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.886633811$ $[1, 1, 0, -4722351185, 124904674969749]$ \(y^2+xy=x^3+x^2-4722351185x+124904674969749\) 2.3.0.a.1, 132.6.0.?, 204.6.0.?, 748.6.0.?, 2244.12.0.? $[(-56830, 14510783)]$
209814.k2 209814.k \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.773267623$ $[1, 1, 0, -295148625, 1951520032917]$ \(y^2+xy=x^3+x^2-295148625x+1951520032917\) 2.3.0.a.1, 66.6.0.a.1, 204.6.0.?, 748.6.0.?, 2244.12.0.? $[(137429, 50498049)]$
209814.l1 209814.l \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 69210, 10161936]$ \(y^2+xy=x^3+x^2+69210x+10161936\) 6.2.0.a.1 $[ ]$
209814.m1 209814.m \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -12694475, 17158476141]$ \(y^2+xy=x^3+x^2-12694475x+17158476141\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ $[ ]$
209814.m2 209814.m \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -805015, 48030647977]$ \(y^2+xy=x^3+x^2-805015x+48030647977\) 2.3.0.a.1, 4.12.0.f.1, 68.24.0.j.1, 264.24.0.?, 4488.48.1.? $[ ]$
209814.n1 209814.n \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6924590, -7016188032]$ \(y^2+xy=x^3+x^2-6924590x-7016188032\) 2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? $[ ]$
209814.n2 209814.n \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6574900, -7756062134]$ \(y^2+xy=x^3+x^2-6574900x-7756062134\) 2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? $[ ]$
209814.o1 209814.o \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -580295449120, 170145804044320768]$ \(y^2+xy=x^3+x^2-580295449120x+170145804044320768\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ $[ ]$
209814.o2 209814.o \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -580289854080, 170149249090609056]$ \(y^2+xy=x^3+x^2-580289854080x+170149249090609056\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ $[ ]$
209814.o3 209814.o \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -7184311840, 232013155972096]$ \(y^2+xy=x^3+x^2-7184311840x+232013155972096\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ $[ ]$
209814.o4 209814.o \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1454990880, 591875243062272]$ \(y^2+xy=x^3+x^2-1454990880x+591875243062272\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ $[ ]$
209814.p1 209814.p \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -496490590, -4258295011604]$ \(y^2+xy=x^3+x^2-496490590x-4258295011604\) 3.4.0.a.1, 24.8.0-3.a.1.6, 51.8.0-3.a.1.1, 408.16.0.? $[ ]$
209814.p2 209814.p \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6050365, -6001702373]$ \(y^2+xy=x^3+x^2-6050365x-6001702373\) 3.4.0.a.1, 24.8.0-3.a.1.5, 51.8.0-3.a.1.2, 408.16.0.? $[ ]$
209814.q1 209814.q \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3907, 103393]$ \(y^2+xy=x^3+x^2-3907x+103393\) 4.8.0.b.1, 748.16.0.? $[ ]$
209814.r1 209814.r \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -31612704, -67885747200]$ \(y^2+xy=x^3+x^2-31612704x-67885747200\) 2.3.0.a.1, 8.6.0.d.1, 1122.6.0.?, 4488.12.0.? $[ ]$
209814.r2 209814.r \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -9232544, -162110696832]$ \(y^2+xy=x^3+x^2-9232544x-162110696832\) 2.3.0.a.1, 8.6.0.a.1, 2244.6.0.?, 4488.12.0.? $[ ]$
209814.s1 209814.s \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -212599, -37813475]$ \(y^2+xy=x^3+x^2-212599x-37813475\) 24.2.0.a.1 $[ ]$
209814.t1 209814.t \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -970180664, 11630863048182]$ \(y^2+xy=x^3+x^2-970180664x+11630863048182\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 16.48.0.l.2, 88.48.0.?, $\ldots$ $[ ]$
209814.t2 209814.t \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -60636974, 181708987200]$ \(y^2+xy=x^3+x^2-60636974x+181708987200\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.e.1, 88.96.0.?, 136.96.1.?, $\ldots$ $[ ]$
209814.t3 209814.t \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -57489764, 201416186778]$ \(y^2+xy=x^3+x^2-57489764x+201416186778\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.m.2, 176.96.0.?, 272.96.1.?, $\ldots$ $[ ]$
209814.t4 209814.t \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -3987194, 2525733060]$ \(y^2+xy=x^3+x^2-3987194x+2525733060\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.h.2, 44.24.0-4.b.1.2, 68.24.0.c.1, $\ldots$ $[ ]$
209814.t5 209814.t \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1189674, -463696812]$ \(y^2+xy=x^3+x^2-1189674x-463696812\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0.bb.1, 34.6.0.a.1, $\ldots$ $[ ]$
209814.t6 209814.t \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 7902266, 14721941128]$ \(y^2+xy=x^3+x^2+7902266x+14721941128\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.y.2, 44.12.0-4.c.1.1, $\ldots$ $[ ]$
209814.u1 209814.u \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -20422624, -998470704128]$ \(y^2+xy=x^3+x^2-20422624x-998470704128\) 6.2.0.a.1 $[ ]$
209814.v1 209814.v \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.459134152$ $[1, 1, 0, -108814, -1737248]$ \(y^2+xy=x^3+x^2-108814x-1737248\) 2.3.0.a.1, 66.6.0.a.1, 408.6.0.?, 1496.6.0.?, 4488.12.0.? $[(-24, 940)]$
209814.v2 209814.v \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $10.91826830$ $[1, 1, 0, 431616, -13302450]$ \(y^2+xy=x^3+x^2+431616x-13302450\) 2.3.0.a.1, 132.6.0.?, 408.6.0.?, 1496.6.0.?, 4488.12.0.? $[(53947/2, 12491453/2)]$
209814.w1 209814.w \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $18.72239429$ $[1, 1, 0, -324799, -87051323]$ \(y^2+xy=x^3+x^2-324799x-87051323\) 88.2.0.? $[(405257851/34, 8151367116241/34)]$
209814.x1 209814.x \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6899, 232797]$ \(y^2+xy=x^3+x^2-6899x+232797\) 6.2.0.a.1 $[ ]$
209814.y1 209814.y \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -15745006, 24040521388]$ \(y^2+xy=x^3+x^2-15745006x+24040521388\) 3.4.0.a.1, 9.36.0.f.1, 24.8.0.d.1, 72.72.2.?, 561.8.0.?, $\ldots$ $[ ]$
209814.y2 209814.y \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -194086, 33011092]$ \(y^2+xy=x^3+x^2-194086x+33011092\) 3.4.0.a.1, 9.36.0.f.2, 24.8.0.d.1, 72.72.2.?, 561.8.0.?, $\ldots$ $[ ]$
209814.z1 209814.z \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -140296356, -3225705621552]$ \(y^2+xy=x^3+x^2-140296356x-3225705621552\) 3.4.0.a.1, 24.8.0-3.a.1.7, 51.8.0-3.a.1.1, 136.2.0.?, 408.16.0.? $[ ]$
209814.z2 209814.z \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 15490539, 115331285997]$ \(y^2+xy=x^3+x^2+15490539x+115331285997\) 3.4.0.a.1, 24.8.0-3.a.1.8, 51.8.0-3.a.1.2, 136.2.0.?, 408.16.0.? $[ ]$
209814.ba1 209814.ba \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1041727238, -12832694650860]$ \(y^2+xy=x^3+x^2-1041727238x-12832694650860\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.q.1, 34.6.0.a.1, 68.12.0.k.1, $\ldots$ $[ ]$
209814.ba2 209814.ba \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -280801798, -31176324232940]$ \(y^2+xy=x^3+x^2-280801798x-31176324232940\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.t.1, 68.12.0.l.1, 136.24.0.?, $\ldots$ $[ ]$
209814.bb1 209814.bb \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -351963713, 2541381613665]$ \(y^2+xy=x^3+x^2-351963713x+2541381613665\) 2.3.0.a.1, 5.12.0.a.2, 8.6.0.d.1, 10.36.0.a.1, 40.72.1.t.1, $\ldots$ $[ ]$
Next   displayed columns for results