Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
20700.a1 |
20700u1 |
20700.a |
20700u |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{8} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$0.389191563$ |
$1$ |
|
$8$ |
$34560$ |
$1.220373$ |
$393040/207$ |
$0.76468$ |
$3.81309$ |
$[0, 0, 0, -6375, 58750]$ |
\(y^2=x^3-6375x+58750\) |
92.2.0.? |
$[(-25, 450)]$ |
20700.b1 |
20700p1 |
20700.b |
20700p |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{10} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$288000$ |
$2.297119$ |
$35248450000/1358127$ |
$0.98922$ |
$5.28451$ |
$[0, 0, 0, -834375, 283418750]$ |
\(y^2=x^3-834375x+283418750\) |
92.2.0.? |
$[ ]$ |
20700.c1 |
20700b2 |
20700.c |
20700b |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{9} \cdot 5^{6} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$36864$ |
$1.303679$ |
$949104/529$ |
$1.02705$ |
$3.90954$ |
$[0, 0, 0, -8775, 60750]$ |
\(y^2=x^3-8775x+60750\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[ ]$ |
20700.c2 |
20700b1 |
20700.c |
20700b |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{9} \cdot 5^{6} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$18432$ |
$0.957104$ |
$3538944/23$ |
$1.16643$ |
$3.76298$ |
$[0, 0, 0, -5400, -151875]$ |
\(y^2=x^3-5400x-151875\) |
2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? |
$[ ]$ |
20700.d1 |
20700j2 |
20700.d |
20700j |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$690$ |
$16$ |
$0$ |
$2.951228608$ |
$1$ |
|
$2$ |
$25920$ |
$1.084063$ |
$-42592000/12167$ |
$0.87185$ |
$3.72205$ |
$[0, 0, 0, -4125, 124625]$ |
\(y^2=x^3-4125x+124625\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 46.2.0.a.1, 138.8.0.?, 690.16.0.? |
$[(-40, 475)]$ |
20700.d2 |
20700j1 |
20700.d |
20700j |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$690$ |
$16$ |
$0$ |
$0.983742869$ |
$1$ |
|
$4$ |
$8640$ |
$0.534756$ |
$32000/23$ |
$0.71982$ |
$2.95781$ |
$[0, 0, 0, 375, -1375]$ |
\(y^2=x^3+375x-1375\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 46.2.0.a.1, 138.8.0.?, 690.16.0.? |
$[(5, 25)]$ |
20700.e1 |
20700k1 |
20700.e |
20700k |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 23^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$15.04903965$ |
$1$ |
|
$0$ |
$120960$ |
$1.839603$ |
$-2688885504/160908575$ |
$1.01469$ |
$4.56652$ |
$[0, 0, 0, -16425, -8278875]$ |
\(y^2=x^3-16425x-8278875\) |
46.2.0.a.1 |
$[(15743980/103, 62157184525/103)]$ |
20700.f1 |
20700d2 |
20700.f |
20700d |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{6} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$0.934105309$ |
$1$ |
|
$7$ |
$12288$ |
$0.754372$ |
$949104/529$ |
$1.02705$ |
$3.24625$ |
$[0, 0, 0, -975, -2250]$ |
\(y^2=x^3-975x-2250\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[(-5, 50)]$ |
20700.f2 |
20700d1 |
20700.f |
20700d |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{3} \cdot 5^{6} \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$0.467052654$ |
$1$ |
|
$9$ |
$6144$ |
$0.407798$ |
$3538944/23$ |
$1.16643$ |
$3.09969$ |
$[0, 0, 0, -600, 5625]$ |
\(y^2=x^3-600x+5625\) |
2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? |
$[(0, 75)]$ |
20700.g1 |
20700t2 |
20700.g |
20700t |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 23^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$276$ |
$16$ |
$0$ |
$1.015005124$ |
$1$ |
|
$8$ |
$36288$ |
$1.140018$ |
$941054800/12167$ |
$0.87865$ |
$3.94823$ |
$[0, 0, 0, -9975, 379150]$ |
\(y^2=x^3-9975x+379150\) |
3.8.0-3.a.1.2, 92.2.0.?, 276.16.0.? |
$[(35, 270)]$ |
20700.g2 |
20700t1 |
20700.g |
20700t |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$276$ |
$16$ |
$0$ |
$3.045015372$ |
$1$ |
|
$0$ |
$12096$ |
$0.590712$ |
$878800/23$ |
$0.75084$ |
$3.24625$ |
$[0, 0, 0, -975, -11450]$ |
\(y^2=x^3-975x-11450\) |
3.8.0-3.a.1.1, 92.2.0.?, 276.16.0.? |
$[(-79/2, 81/2)]$ |
20700.h1 |
20700e1 |
20700.h |
20700e |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{7} \cdot 5^{8} \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1380$ |
$12$ |
$0$ |
$2.968695992$ |
$1$ |
|
$3$ |
$23040$ |
$0.988352$ |
$67108864/1725$ |
$1.03105$ |
$3.72742$ |
$[0, 0, 0, -4800, 125125]$ |
\(y^2=x^3-4800x+125125\) |
2.3.0.a.1, 20.6.0.b.1, 138.6.0.?, 1380.12.0.? |
$[(-45, 500)]$ |
20700.h2 |
20700e2 |
20700.h |
20700e |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{7} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1380$ |
$12$ |
$0$ |
$1.484347996$ |
$1$ |
|
$3$ |
$46080$ |
$1.334925$ |
$21296/23805$ |
$0.90472$ |
$3.95711$ |
$[0, 0, 0, 825, 400750]$ |
\(y^2=x^3+825x+400750\) |
2.3.0.a.1, 20.6.0.a.1, 276.6.0.?, 1380.12.0.? |
$[(110, 1350)]$ |
20700.i1 |
20700h1 |
20700.i |
20700h |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{7} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$1.330726507$ |
$1$ |
|
$2$ |
$27648$ |
$0.915956$ |
$-221184/115$ |
$0.84034$ |
$3.49584$ |
$[0, 0, 0, -1800, 40500]$ |
\(y^2=x^3-1800x+40500\) |
230.2.0.? |
$[(45, 225)]$ |
20700.j1 |
20700f2 |
20700.j |
20700f |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{9} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$690$ |
$16$ |
$0$ |
$3.740509535$ |
$1$ |
|
$2$ |
$165888$ |
$1.997238$ |
$-1138621087744/13687875$ |
$0.98819$ |
$4.98847$ |
$[0, 0, 0, -310800, 67380500]$ |
\(y^2=x^3-310800x+67380500\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 138.8.0.?, 230.2.0.?, 690.16.0.? |
$[(-155, 10575)]$ |
20700.j2 |
20700f1 |
20700.j |
20700f |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5^{7} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$690$ |
$16$ |
$0$ |
$1.246836511$ |
$1$ |
|
$4$ |
$55296$ |
$1.447931$ |
$87228416/83835$ |
$0.92669$ |
$4.03280$ |
$[0, 0, 0, 13200, 474500]$ |
\(y^2=x^3+13200x+474500\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 138.8.0.?, 230.2.0.?, 690.16.0.? |
$[(-20, 450)]$ |
20700.k1 |
20700g2 |
20700.k |
20700g |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{10} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1380$ |
$16$ |
$0$ |
$7.044066920$ |
$1$ |
|
$0$ |
$181440$ |
$1.944736$ |
$941054800/12167$ |
$0.87865$ |
$4.91993$ |
$[0, 0, 0, -249375, 47393750]$ |
\(y^2=x^3-249375x+47393750\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 92.2.0.?, 276.8.0.?, 1380.16.0.? |
$[(-2279/2, 17019/2)]$ |
20700.k2 |
20700g1 |
20700.k |
20700g |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{10} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1380$ |
$16$ |
$0$ |
$2.348022306$ |
$1$ |
|
$4$ |
$60480$ |
$1.395432$ |
$878800/23$ |
$0.75084$ |
$4.21795$ |
$[0, 0, 0, -24375, -1431250]$ |
\(y^2=x^3-24375x-1431250\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 92.2.0.?, 276.8.0.?, 1380.16.0.? |
$[(-101, 18)]$ |
20700.l1 |
20700c2 |
20700.l |
20700c |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{9} \cdot 5^{10} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$21.46160548$ |
$1$ |
|
$1$ |
$276480$ |
$2.269215$ |
$16110654114672/330625$ |
$0.94631$ |
$5.58467$ |
$[0, 0, 0, -2255175, -1303499250]$ |
\(y^2=x^3-2255175x-1303499250\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[(50079555786/1543, 11177649270251316/1543)]$ |
20700.l2 |
20700c1 |
20700.l |
20700c |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{9} \cdot 5^{14} \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$10.73080274$ |
$1$ |
|
$1$ |
$138240$ |
$1.922640$ |
$69657034752/8984375$ |
$1.15465$ |
$4.75791$ |
$[0, 0, 0, -145800, -18889875]$ |
\(y^2=x^3-145800x-18889875\) |
2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? |
$[(-133445/29, 12189700/29)]$ |
20700.m1 |
20700i1 |
20700.m |
20700i |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$2.870403671$ |
$1$ |
|
$2$ |
$17280$ |
$0.862973$ |
$-7626496/575$ |
$0.74393$ |
$3.52092$ |
$[0, 0, 0, -2325, -45875]$ |
\(y^2=x^3-2325x-45875\) |
46.2.0.a.1 |
$[(60, 175)]$ |
20700.n1 |
20700a2 |
20700.n |
20700a |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{10} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$92160$ |
$1.719908$ |
$16110654114672/330625$ |
$0.94631$ |
$4.92138$ |
$[0, 0, 0, -250575, 48277750]$ |
\(y^2=x^3-250575x+48277750\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[ ]$ |
20700.n2 |
20700a1 |
20700.n |
20700a |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{3} \cdot 5^{14} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$46080$ |
$1.373333$ |
$69657034752/8984375$ |
$1.15465$ |
$4.09462$ |
$[0, 0, 0, -16200, 699625]$ |
\(y^2=x^3-16200x+699625\) |
2.3.0.a.1, 12.6.0.b.1, 92.6.0.?, 138.6.0.?, 276.12.0.? |
$[ ]$ |
20700.o1 |
20700l1 |
20700.o |
20700l |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{2} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$2.043620717$ |
$1$ |
|
$2$ |
$6912$ |
$0.415653$ |
$393040/207$ |
$0.76468$ |
$2.84139$ |
$[0, 0, 0, -255, 470]$ |
\(y^2=x^3-255x+470\) |
92.2.0.? |
$[(-14, 36)]$ |
20700.p1 |
20700o1 |
20700.p |
20700o |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{13} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$258048$ |
$2.085800$ |
$-260956266496/145546875$ |
$0.96228$ |
$4.90607$ |
$[0, 0, 0, -190200, -44741500]$ |
\(y^2=x^3-190200x-44741500\) |
230.2.0.? |
$[ ]$ |
20700.q1 |
20700s1 |
20700.q |
20700s |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{4} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$92$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$1.492401$ |
$35248450000/1358127$ |
$0.98922$ |
$4.31282$ |
$[0, 0, 0, -33375, 2267350]$ |
\(y^2=x^3-33375x+2267350\) |
92.2.0.? |
$[ ]$ |
20700.r1 |
20700q1 |
20700.r |
20700q |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10752$ |
$0.532613$ |
$-6912/23$ |
$0.66890$ |
$2.99575$ |
$[0, 0, 0, -225, -3375]$ |
\(y^2=x^3-225x-3375\) |
46.2.0.a.1 |
$[ ]$ |
20700.s1 |
20700m3 |
20700.s |
20700m |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{7} \cdot 5^{8} \cdot 23^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1380$ |
$96$ |
$1$ |
$3.557492618$ |
$1$ |
|
$3$ |
$290304$ |
$2.179474$ |
$12444451776495616/912525$ |
$1.07101$ |
$5.64314$ |
$[0, 0, 0, -2737200, 1743042125]$ |
\(y^2=x^3-2737200x+1743042125\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 15.8.0-3.a.1.2, $\ldots$ |
$[(2155, 76500)]$ |
20700.s2 |
20700m4 |
20700.s |
20700m |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{7} \cdot 23^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1380$ |
$96$ |
$1$ |
$7.114985237$ |
$1$ |
|
$1$ |
$580608$ |
$2.526047$ |
$-772993034343376/6661615005$ |
$1.03684$ |
$5.64401$ |
$[0, 0, 0, -2731575, 1750562750]$ |
\(y^2=x^3-2731575x+1750562750\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 15.8.0-3.a.1.2, $\ldots$ |
$[(34465/4, 4899825/4)]$ |
20700.s3 |
20700m1 |
20700.s |
20700m |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( 2^{4} \cdot 3^{9} \cdot 5^{12} \cdot 23 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1380$ |
$96$ |
$1$ |
$1.185830872$ |
$1$ |
|
$7$ |
$96768$ |
$1.630167$ |
$31238127616/9703125$ |
$1.02129$ |
$4.34557$ |
$[0, 0, 0, -37200, 1879625]$ |
\(y^2=x^3-37200x+1879625\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 15.8.0-3.a.1.1, $\ldots$ |
$[(40, 675)]$ |
20700.s4 |
20700m2 |
20700.s |
20700m |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5^{9} \cdot 23^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1380$ |
$96$ |
$1$ |
$2.371661745$ |
$1$ |
|
$5$ |
$193536$ |
$1.976740$ |
$41957807024/48205125$ |
$0.90940$ |
$4.65425$ |
$[0, 0, 0, 103425, 12707750]$ |
\(y^2=x^3+103425x+12707750\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 15.8.0-3.a.1.1, $\ldots$ |
$[(-41, 2898)]$ |
20700.t1 |
20700r1 |
20700.t |
20700r |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{10} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$690$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$1.587444$ |
$-687518464/7604375$ |
$0.91097$ |
$4.26357$ |
$[0, 0, 0, -10425, -1837375]$ |
\(y^2=x^3-10425x-1837375\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 46.2.0.a.1, 138.8.0.?, 690.16.0.? |
$[ ]$ |
20700.t2 |
20700r2 |
20700.t |
20700r |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{18} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$690$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$311040$ |
$2.136749$ |
$489277573376/5615234375$ |
$1.14781$ |
$4.91781$ |
$[0, 0, 0, 93075, 47428625]$ |
\(y^2=x^3+93075x+47428625\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 46.2.0.a.1, 138.8.0.?, 690.16.0.? |
$[ ]$ |
20700.u1 |
20700n1 |
20700.u |
20700n |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{20} \cdot 5^{19} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$16.30144829$ |
$1$ |
|
$0$ |
$8386560$ |
$3.791279$ |
$194879272239195815936/134287459716796875$ |
$1.17188$ |
$6.89406$ |
$[0, 0, 0, 172561200, -381042249500]$ |
\(y^2=x^3+172561200x-381042249500\) |
230.2.0.? |
$[(81620420/181, 1504087553250/181)]$ |