Learn more

Refine search


Results (1-50 of 78 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
20475.a1 20475.a \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -5925, -200844]$ \(y^2+y=x^3-5925x-200844\) 182.2.0.? $[ ]$
20475.b1 20475.b \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.538111121$ $[0, 0, 1, -1875, -23594]$ \(y^2+y=x^3-1875x-23594\) 26.2.0.a.1 $[(-25, 87)]$
20475.c1 20475.c \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 225, -844]$ \(y^2+y=x^3+225x-844\) 182.2.0.? $[ ]$
20475.d1 20475.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -30751880, 65641548872]$ \(y^2+xy+y=x^3-x^2-30751880x+65641548872\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 60.12.0-4.c.1.1, 84.12.0.?, $\ldots$ $[ ]$
20475.d2 20475.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -10541255, -13170371128]$ \(y^2+xy+y=x^3-x^2-10541255x-13170371128\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 60.12.0-4.c.1.2, 120.48.0.?, $\ldots$ $[ ]$
20475.d3 20475.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -2047505, 884478872]$ \(y^2+xy+y=x^3-x^2-2047505x+884478872\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.8, 60.24.0-4.b.1.1, 84.24.0.?, $\ldots$ $[ ]$
20475.d4 20475.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -669380, -198727378]$ \(y^2+xy+y=x^3-x^2-669380x-198727378\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.10, 60.24.0-4.b.1.3, 120.48.0.?, $\ldots$ $[ ]$
20475.d5 20475.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 33745, -13102378]$ \(y^2+xy+y=x^3-x^2+33745x-13102378\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.2, 60.12.0-4.c.1.2, $\ldots$ $[ ]$
20475.d6 20475.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 4606870, 5436071372]$ \(y^2+xy+y=x^3-x^2+4606870x+5436071372\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.4, 60.12.0-4.c.1.1, $\ldots$ $[ ]$
20475.e1 20475.e \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -22055, 1196822]$ \(y^2+xy+y=x^3-x^2-22055x+1196822\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
20475.e2 20475.e \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 17320, 4976822]$ \(y^2+xy+y=x^3-x^2+17320x+4976822\) 2.3.0.a.1, 70.6.0.a.1, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
20475.f1 20475.f \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.012285009$ $[1, -1, 1, 2320, 6800572]$ \(y^2+xy+y=x^3-x^2+2320x+6800572\) 1092.2.0.? $[(-110, 2336)]$
20475.g1 20475.g \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.650039077$ $[1, -1, 1, -5255, 147872]$ \(y^2+xy+y=x^3-x^2-5255x+147872\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[(34, 70)]$
20475.g2 20475.g \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.300078154$ $[1, -1, 1, -380, 1622]$ \(y^2+xy+y=x^3-x^2-380x+1622\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[(4, 10)]$
20475.h1 20475.h \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $8.553031623$ $[1, -1, 1, -5436230, -4873232478]$ \(y^2+xy+y=x^3-x^2-5436230x-4873232478\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 364.12.0.?, 420.12.0.?, $\ldots$ $[(414395/2, 266277129/2)]$
20475.h2 20475.h \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.276515811$ $[1, -1, 1, -419855, -37446978]$ \(y^2+xy+y=x^3-x^2-419855x-37446978\) 2.6.0.a.1, 4.12.0-2.a.1.1, 364.24.0.?, 420.24.0.?, 780.24.0.?, $\ldots$ $[(-591, 2295)]$
20475.h3 20475.h \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/4\Z$ $2.138257905$ $[1, -1, 1, -229730, 42025272]$ \(y^2+xy+y=x^3-x^2-229730x+42025272\) 2.3.0.a.1, 4.12.0-4.c.1.1, 210.6.0.?, 420.24.0.?, 728.24.0.?, $\ldots$ $[(254, -15)]$
20475.h4 20475.h \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $8.553031623$ $[1, -1, 1, 1554520, -290166978]$ \(y^2+xy+y=x^3-x^2+1554520x-290166978\) 2.3.0.a.1, 4.12.0-4.c.1.2, 390.6.0.?, 728.24.0.?, 780.24.0.?, $\ldots$ $[(795/2, 40473/2)]$
20475.i1 20475.i \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -1055, 54072]$ \(y^2+xy+y=x^3-x^2-1055x+54072\) 1092.2.0.? $[ ]$
20475.j1 20475.j \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -44735, -3588658]$ \(y^2+xy+y=x^3-x^2-44735x-3588658\) 2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? $[ ]$
20475.j2 20475.j \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -6710, -9520558]$ \(y^2+xy+y=x^3-x^2-6710x-9520558\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[ ]$
20475.k1 20475.k \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.066122312$ $[1, -1, 1, -29590355, 61631427772]$ \(y^2+xy+y=x^3-x^2-29590355x+61631427772\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[(1379, 152435)]$
20475.k2 20475.k \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.533061156$ $[1, -1, 1, -29546480, 61824214522]$ \(y^2+xy+y=x^3-x^2-29546480x+61824214522\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[(3134, -2005)]$
20475.l1 20475.l \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.728410483$ $[1, -1, 1, -3740, -23988]$ \(y^2+xy+y=x^3-x^2-3740x-23988\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(89, 540)]$
20475.l2 20475.l \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.364205241$ $[1, -1, 1, -2165, 39012]$ \(y^2+xy+y=x^3-x^2-2165x+39012\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(20, 48)]$
20475.m1 20475.m \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.360657155$ $[1, -1, 1, -380, -11528]$ \(y^2+xy+y=x^3-x^2-380x-11528\) 1092.2.0.? $[(64, 440)]$
20475.n1 20475.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.433184671$ $[1, -1, 1, -89255, 9792622]$ \(y^2+xy+y=x^3-x^2-89255x+9792622\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 60.12.0-4.c.1.1, 112.24.0.?, $\ldots$ $[(124, 725)]$
20475.n2 20475.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.866369343$ $[1, -1, 1, -16130, -591128]$ \(y^2+xy+y=x^3-x^2-16130x-591128\) 2.6.0.a.1, 4.12.0.a.1, 56.24.0.j.1, 60.24.0-4.a.1.1, 156.24.0.?, $\ldots$ $[(-76, 475)]$
20475.n3 20475.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.732738686$ $[1, -1, 1, -15005, -703628]$ \(y^2+xy+y=x^3-x^2-15005x-703628\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 60.12.0-4.c.1.2, 112.24.0.?, $\ldots$ $[(-70, 38)]$
20475.n4 20475.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.732738686$ $[1, -1, 1, 38995, -3788378]$ \(y^2+xy+y=x^3-x^2+38995x-3788378\) 2.3.0.a.1, 4.12.0.d.1, 56.24.0.x.1, 60.24.0-4.d.1.1, 312.24.0.?, $\ldots$ $[(239, 4255)]$
20475.o1 20475.o \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 10, -2018]$ \(y^2+xy+y=x^3-x^2+10x-2018\) 1092.2.0.? $[ ]$
20475.p1 20475.p \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $4.018226565$ $[1, -1, 1, -1055, -10178]$ \(y^2+xy+y=x^3-x^2-1055x-10178\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 546.6.0.?, 1092.12.0.? $[(38, 40)]$
20475.p2 20475.p \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.009113282$ $[1, -1, 1, 2320, -64178]$ \(y^2+xy+y=x^3-x^2+2320x-64178\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? $[(70, 626)]$
20475.q1 20475.q \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -39380, 1733872]$ \(y^2+xy+y=x^3-x^2-39380x+1733872\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
20475.q2 20475.q \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -34505, 2474872]$ \(y^2+xy+y=x^3-x^2-34505x+2474872\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
20475.r1 20475.r \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -26400, 4069156]$ \(y^2+y=x^3-26400x+4069156\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 117.36.0.?, $\ldots$ $[ ]$
20475.r2 20475.r \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -1650, -25844]$ \(y^2+y=x^3-1650x-25844\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 117.36.0.?, $\ldots$ $[ ]$
20475.r3 20475.r \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 2850, -128219]$ \(y^2+y=x^3+2850x-128219\) 3.12.0.a.1, 15.24.0-3.a.1.1, 117.36.0.?, 182.2.0.?, 546.24.1.?, $\ldots$ $[ ]$
20475.s1 20475.s \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $8.504079170$ $[1, -1, 0, -93492, -3091959]$ \(y^2+xy=x^3-x^2-93492x-3091959\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(-875/4, 88919/4)]$
20475.s2 20475.s \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $4.252039585$ $[1, -1, 0, -54117, 4822416]$ \(y^2+xy=x^3-x^2-54117x+4822416\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(0, 2196)]$
20475.t1 20475.t \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -9492, -1450459]$ \(y^2+xy=x^3-x^2-9492x-1450459\) 1092.2.0.? $[ ]$
20475.u1 20475.u \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $4.005098467$ $[1, -1, 0, -47292, -3945259]$ \(y^2+xy=x^3-x^2-47292x-3945259\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[(3271/2, 176279/2)]$
20475.u2 20475.u \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $2.002549233$ $[1, -1, 0, -3417, -40384]$ \(y^2+xy=x^3-x^2-3417x-40384\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[(-16, 108)]$
20475.v1 20475.v \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -126792, -17343509]$ \(y^2+xy=x^3-x^2-126792x-17343509\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 84.12.0.?, 210.6.0.?, $\ldots$ $[ ]$
20475.v2 20475.v \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -52542, 4479241]$ \(y^2+xy=x^3-x^2-52542x+4479241\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 156.12.0.?, 168.12.0.?, $\ldots$ $[ ]$
20475.v3 20475.v \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -8667, -215384]$ \(y^2+xy=x^3-x^2-8667x-215384\) 2.6.0.a.1, 20.12.0-2.a.1.1, 84.12.0.?, 156.12.0.?, 364.12.0.?, $\ldots$ $[ ]$
20475.v4 20475.v \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1458, -23009]$ \(y^2+xy=x^3-x^2+1458x-23009\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 84.12.0.?, 312.12.0.?, $\ldots$ $[ ]$
20475.w1 20475.w \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.596243173$ $[1, -1, 0, 258, -251959]$ \(y^2+xy=x^3-x^2+258x-251959\) 1092.2.0.? $[(544, 12403)]$
20475.x1 20475.x \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -354417, -46460134]$ \(y^2+xy=x^3-x^2-354417x-46460134\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
20475.x2 20475.x \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -310542, -66511009]$ \(y^2+xy=x^3-x^2-310542x-66511009\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
Next   displayed columns for results