Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 310 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
203840.a1 203840.a \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.708323262$ $[0, 0, 0, 1652, -13328]$ \(y^2=x^3+1652x-13328\) 728.2.0.? $[(46, 400), (14, 112)]$
203840.b1 203840.b \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.276994441$ $[0, 0, 0, -102508, -12836432]$ \(y^2=x^3-102508x-12836432\) 728.2.0.? $[(644, 13720)]$
203840.c1 203840.c \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -15766828, -24097339952]$ \(y^2=x^3-15766828x-24097339952\) 20.2.0.a.1 $[ ]$
203840.d1 203840.d \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 15092, 8566768]$ \(y^2=x^3+15092x+8566768\) 20.2.0.a.1 $[ ]$
203840.e1 203840.e \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.487768126$ $[0, 0, 0, 308, 24976]$ \(y^2=x^3+308x+24976\) 20.2.0.a.1 $[(2, 160), (162, 2080)]$
203840.f1 203840.f \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -772574572, -8265387603536]$ \(y^2=x^3-772574572x-8265387603536\) 20.2.0.a.1 $[ ]$
203840.g1 203840.g \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -119847532, 505067977456]$ \(y^2=x^3-119847532x+505067977456\) 728.2.0.? $[ ]$
203840.h1 203840.h \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.910720773$ $[0, 0, 0, 80948, -4571504]$ \(y^2=x^3+80948x-4571504\) 728.2.0.? $[(882, 27440)]$
203840.i1 203840.i \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -30641, 1712815]$ \(y^2=x^3+x^2-30641x+1712815\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
203840.i2 203840.i \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 3659, 155595]$ \(y^2=x^3+x^2+3659x+155595\) 2.3.0.a.1, 140.6.0.?, 182.6.0.?, 260.6.0.?, 1820.12.0.? $[ ]$
203840.j1 203840.j \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $6.928785116$ $[0, 1, 0, -26476, -2202726]$ \(y^2=x^3+x^2-26476x-2202726\) 52.2.0.a.1 $[(11021/2, 1155125/2)]$
203840.k1 203840.k \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $6.091175599$ $[0, 1, 0, -9603841, -11459937441]$ \(y^2=x^3+x^2-9603841x-11459937441\) 3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? $[(3674, 53495)]$
203840.k2 203840.k \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.030391866$ $[0, 1, 0, 1291519, -35509208225]$ \(y^2=x^3+x^2+1291519x-35509208225\) 3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? $[(23362, 3570125)]$
203840.l1 203840.l \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.208868622$ $[0, 1, 0, -704881, 227289999]$ \(y^2=x^3+x^2-704881x+227289999\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 130.6.0.?, 260.24.0.?, $\ldots$ $[(527, 1568)]$
203840.l2 203840.l \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.417737244$ $[0, 1, 0, -512801, 354101215]$ \(y^2=x^3+x^2-512801x+354101215\) 2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 260.12.0.?, 520.48.0.? $[(-159, 20776)]$
203840.m1 203840.m \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.775078607$ $[0, 1, 0, -2637441, -1649280641]$ \(y^2=x^3+x^2-2637441x-1649280641\) 2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.3, 130.6.0.?, 260.24.0.?, $\ldots$ $[(-943, 392)]$
203840.m2 203840.m \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.550157214$ $[0, 1, 0, -2386561, -1975374465]$ \(y^2=x^3+x^2-2386561x-1975374465\) 2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ $[(2641, 100744)]$
203840.n1 203840.n \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.949660360$ $[0, 1, 0, -3201, -15905]$ \(y^2=x^3+x^2-3201x-15905\) 2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.3, 130.6.0.?, 260.24.0.?, $\ldots$ $[(-19, 196), (121, 1176)]$
203840.n2 203840.n \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.949660360$ $[0, 1, 0, 12479, -113121]$ \(y^2=x^3+x^2+12479x-113121\) 2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ $[(139, 2080), (11, 160)]$
203840.o1 203840.o \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1136, -15086]$ \(y^2=x^3+x^2-1136x-15086\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
203840.o2 203840.o \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -681, -26825]$ \(y^2=x^3+x^2-681x-26825\) 2.3.0.a.1, 140.6.0.?, 182.6.0.?, 260.6.0.?, 1820.12.0.? $[ ]$
203840.p1 203840.p \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.147342056$ $[0, 1, 0, -46000481, 120068318719]$ \(y^2=x^3+x^2-46000481x+120068318719\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 56.6.0.a.1, $\ldots$ $[(3866, 5145)]$
203840.p2 203840.p \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.294684113$ $[0, 1, 0, -2974561, 1738433535]$ \(y^2=x^3+x^2-2974561x+1738433535\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 56.6.0.d.1, $\ldots$ $[(79899/5, 19719168/5)]$
203840.p3 203840.p \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.049114018$ $[0, 1, 0, -951841, -84883905]$ \(y^2=x^3+x^2-951841x-84883905\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 56.6.0.a.1, $\ldots$ $[(-166, 8281)]$
203840.p4 203840.p \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.098228037$ $[0, 1, 0, -732321, -241138241]$ \(y^2=x^3+x^2-732321x-241138241\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 56.6.0.d.1, $\ldots$ $[(3075, 163072)]$
203840.q1 203840.q \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.888899163$ $[0, 1, 0, -1659088321, 25997777790879]$ \(y^2=x^3+x^2-1659088321x+25997777790879\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.4, $\ldots$ $[(24411, 211680)]$
203840.q2 203840.q \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $9.777798327$ $[0, 1, 0, -1658868801, 26005004784415]$ \(y^2=x^3+x^2-1658868801x+26005004784415\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.8, $\ldots$ $[(1087969/5, 752437728/5)]$
203840.q3 203840.q \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.629633054$ $[0, 1, 0, -63836481, -154179872225]$ \(y^2=x^3+x^2-63836481x-154179872225\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 12.72.0-6.a.1.4, 56.6.0.a.1, $\ldots$ $[(10299, 529984)]$
203840.q4 203840.q \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.888899163$ $[0, 1, 0, -59947841, -178672207841]$ \(y^2=x^3+x^2-59947841x-178672207841\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.10, $\ldots$ $[(30907, 5243392)]$
203840.q5 203840.q \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.259266109$ $[0, 1, 0, -20810561, 34454366239]$ \(y^2=x^3+x^2-20810561x+34454366239\) 2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 12.72.0-6.a.1.2, 56.6.0.d.1, $\ldots$ $[(3387, 53248)]$
203840.q6 203840.q \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $9.777798327$ $[0, 1, 0, -3750721, -2786461665]$ \(y^2=x^3+x^2-3750721x-2786461665\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.2, $\ldots$ $[(518081/11, 325120096/11)]$
203840.r1 203840.r \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.675360611$ $[0, 1, 0, -18881, -862625]$ \(y^2=x^3+x^2-18881x-862625\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(-54, 49)]$
203840.r2 203840.r \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.337680305$ $[0, 1, 0, -5161, 127959]$ \(y^2=x^3+x^2-5161x+127959\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(2, 343)]$
203840.s1 203840.s \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.888574747$ $[0, 1, 0, -120801, 9768415]$ \(y^2=x^3+x^2-120801x+9768415\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(-201, 5096)]$
203840.s2 203840.s \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.777149495$ $[0, 1, 0, -107081, 13448119]$ \(y^2=x^3+x^2-107081x+13448119\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(205, 392)]$
203840.t1 203840.t \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.708574178$ $[0, 1, 0, -156, -806]$ \(y^2=x^3+x^2-156x-806\) 52.2.0.a.1 $[(61/2, 195/2)]$
203840.u1 203840.u \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.609987622$ $[0, 1, 0, -1155681, -616263425]$ \(y^2=x^3+x^2-1155681x-616263425\) 3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? $[(2722, 128115)]$
203840.u2 203840.u \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $16.82996286$ $[0, 1, 0, 8832479, 6369455679]$ \(y^2=x^3+x^2+8832479x+6369455679\) 3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? $[(96775026/227, 2011939394625/227)]$
203840.v1 203840.v \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.570880049$ $[0, 1, 0, -55141, 4965435]$ \(y^2=x^3+x^2-55141x+4965435\) 2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.12.0.e.1, 56.12.0-4.b.1.3, $\ldots$ $[(86, 931)]$
203840.v2 203840.v \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.285440024$ $[0, 1, 0, -54161, 5151439]$ \(y^2=x^3+x^2-54161x+5151439\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 28.12.0-4.a.1.1, 140.24.0.?, $\ldots$ $[(67, 1352)]$
203840.w1 203840.w \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -238401, 44676799]$ \(y^2=x^3+x^2-238401x+44676799\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[ ]$
203840.w2 203840.w \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -18881, 289855]$ \(y^2=x^3+x^2-18881x+289855\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[ ]$
203840.x1 203840.x \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.563236127$ $[0, 1, 0, -156426881, -223989532481]$ \(y^2=x^3+x^2-156426881x-223989532481\) 2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? $[(-43147/2, 3651921/2)]$
203840.x2 203840.x \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.126472255$ $[0, 1, 0, -123485161, -527652895785]$ \(y^2=x^3+x^2-123485161x-527652895785\) 2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? $[(65991, 16694496)]$
203840.y1 203840.y \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.838909757$ $[0, 1, 0, -3201, -1069601]$ \(y^2=x^3+x^2-3201x-1069601\) 52.2.0.a.1 $[(114, 245)]$
203840.z1 203840.z \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.702938199$ $[0, 1, 0, -93361, 10125135]$ \(y^2=x^3+x^2-93361x+10125135\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 130.6.0.?, 260.24.0.?, $\ldots$ $[(121, 784)]$
203840.z2 203840.z \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.405876398$ $[0, 1, 0, 98719, 46581919]$ \(y^2=x^3+x^2+98719x+46581919\) 2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 260.12.0.?, 520.48.0.? $[(2865, 154448)]$
203840.ba1 203840.ba \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.873545626$ $[0, 1, 0, -16921, -852825]$ \(y^2=x^3+x^2-16921x-852825\) 2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.3, 130.6.0.?, 260.12.0.?, $\ldots$ $[(275, 3920)]$
203840.ba2 203840.ba \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.747091253$ $[0, 1, 0, -996, -15170]$ \(y^2=x^3+x^2-996x-15170\) 2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ $[(2217/4, 101725/4)]$
203840.bb1 203840.bb \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.840232322$ $[0, 1, 0, -65, -3137]$ \(y^2=x^3+x^2-65x-3137\) 52.2.0.a.1 $[(31, 160)]$
Next   displayed columns for results