| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 203840.a1 |
203840dd1 |
203840.a |
203840dd |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 5^{4} \cdot 7^{3} \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.708323262$ |
$1$ |
|
$16$ |
$507904$ |
$0.906961$ |
$11090466/8125$ |
$0.84117$ |
$2.76831$ |
$[0, 0, 0, 1652, -13328]$ |
\(y^2=x^3+1652x-13328\) |
728.2.0.? |
$[(46, 400), (14, 112)]$ |
$1$ |
| 203840.b1 |
203840de1 |
203840.b |
203840de |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{23} \cdot 5^{2} \cdot 7^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$3.276994441$ |
$1$ |
|
$2$ |
$2211840$ |
$1.740345$ |
$-3862503009/72800$ |
$0.85780$ |
$3.78392$ |
$[0, 0, 0, -102508, -12836432]$ |
\(y^2=x^3-102508x-12836432\) |
728.2.0.? |
$[(644, 13720)]$ |
$1$ |
| 203840.c1 |
203840d1 |
203840.c |
203840d |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{11} \cdot 7^{4} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14868480$ |
$2.740414$ |
$-688691336801860161/8251953125$ |
$1.03647$ |
$5.01705$ |
$[0, 0, 0, -15766828, -24097339952]$ |
\(y^2=x^3-15766828x-24097339952\) |
20.2.0.a.1 |
$[ ]$ |
$1$ |
| 203840.d1 |
203840df1 |
203840.d |
203840df |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{3} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2580480$ |
$1.846336$ |
$251559/21125$ |
$0.89820$ |
$3.71776$ |
$[0, 0, 0, 15092, 8566768]$ |
\(y^2=x^3+15092x+8566768\) |
20.2.0.a.1 |
$[ ]$ |
$1$ |
| 203840.e1 |
203840a1 |
203840.e |
203840a |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{3} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.487768126$ |
$1$ |
|
$18$ |
$368640$ |
$0.873382$ |
$251559/21125$ |
$0.89820$ |
$2.76272$ |
$[0, 0, 0, 308, 24976]$ |
\(y^2=x^3+308x+24976\) |
20.2.0.a.1 |
$[(2, 160), (162, 2080)]$ |
$1$ |
| 203840.f1 |
203840dc1 |
203840.f |
203840dc |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{11} \cdot 7^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$104079360$ |
$3.713367$ |
$-688691336801860161/8251953125$ |
$1.03647$ |
$5.97209$ |
$[0, 0, 0, -772574572, -8265387603536]$ |
\(y^2=x^3-772574572x-8265387603536\) |
20.2.0.a.1 |
$[ ]$ |
$1$ |
| 203840.g1 |
203840b1 |
203840.g |
203840b |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{15} \cdot 5^{2} \cdot 7^{13} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$59351040$ |
$3.323071$ |
$-49382471573276665608/7644393777475$ |
$1.01005$ |
$5.51481$ |
$[0, 0, 0, -119847532, 505067977456]$ |
\(y^2=x^3-119847532x+505067977456\) |
728.2.0.? |
$[ ]$ |
$1$ |
| 203840.h1 |
203840c1 |
203840.h |
203840c |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 5^{4} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.910720773$ |
$1$ |
|
$4$ |
$3555328$ |
$1.879917$ |
$11090466/8125$ |
$0.84117$ |
$3.72335$ |
$[0, 0, 0, 80948, -4571504]$ |
\(y^2=x^3+80948x-4571504\) |
728.2.0.? |
$[(882, 27440)]$ |
$1$ |
| 203840.i1 |
203840n2 |
203840.i |
203840n |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 5 \cdot 7^{9} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1204224$ |
$1.549461$ |
$4812208/845$ |
$0.73040$ |
$3.48496$ |
$[0, 1, 0, -30641, 1712815]$ |
\(y^2=x^3+x^2-30641x+1712815\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[ ]$ |
$1$ |
| 203840.i2 |
203840n1 |
203840.i |
203840n |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{10} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$602112$ |
$1.202887$ |
$131072/325$ |
$0.80025$ |
$3.06071$ |
$[0, 1, 0, 3659, 155595]$ |
\(y^2=x^3+x^2+3659x+155595\) |
2.3.0.a.1, 140.6.0.?, 182.6.0.?, 260.6.0.?, 1820.12.0.? |
$[ ]$ |
$1$ |
| 203840.j1 |
203840dw1 |
203840.j |
203840dw |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{6} \cdot 5^{6} \cdot 7^{4} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$6.928785116$ |
$1$ |
|
$0$ |
$875520$ |
$1.576008$ |
$-13357497407296/5801453125$ |
$0.95353$ |
$3.49490$ |
$[0, 1, 0, -26476, -2202726]$ |
\(y^2=x^3+x^2-26476x-2202726\) |
52.2.0.a.1 |
$[(11021/2, 1155125/2)]$ |
$1$ |
| 203840.k1 |
203840dn1 |
203840.k |
203840dn |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{42} \cdot 5^{2} \cdot 7^{2} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$6.091175599$ |
$1$ |
|
$2$ |
$7299072$ |
$2.684216$ |
$-7626453723007966609/921488588800$ |
$0.99961$ |
$4.89541$ |
$[0, 1, 0, -9603841, -11459937441]$ |
\(y^2=x^3+x^2-9603841x-11459937441\) |
3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? |
$[(3674, 53495)]$ |
$1$ |
| 203840.k2 |
203840dn2 |
203840.k |
203840dn |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{26} \cdot 5^{6} \cdot 7^{2} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$2.030391866$ |
$1$ |
|
$2$ |
$21897216$ |
$3.233524$ |
$18547687612920431/42417997492000000$ |
$1.07323$ |
$5.08048$ |
$[0, 1, 0, 1291519, -35509208225]$ |
\(y^2=x^3+x^2+1291519x-35509208225\) |
3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? |
$[(23362, 3570125)]$ |
$1$ |
| 203840.l1 |
203840p1 |
203840.l |
203840p |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 5 \cdot 7^{10} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$520$ |
$48$ |
$0$ |
$2.208868622$ |
$1$ |
|
$5$ |
$2949120$ |
$2.112312$ |
$20093868785104/26374985$ |
$0.89502$ |
$4.25444$ |
$[0, 1, 0, -704881, 227289999]$ |
\(y^2=x^3+x^2-704881x+227289999\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 130.6.0.?, 260.24.0.?, $\ldots$ |
$[(527, 1568)]$ |
$1$ |
| 203840.l2 |
203840p2 |
203840.l |
203840p |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{2} \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$520$ |
$48$ |
$0$ |
$4.417737244$ |
$1$ |
|
$3$ |
$5898240$ |
$2.458885$ |
$-1934207124196/5912841025$ |
$0.91971$ |
$4.32670$ |
$[0, 1, 0, -512801, 354101215]$ |
\(y^2=x^3+x^2-512801x+354101215\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 260.12.0.?, 520.48.0.? |
$[(-159, 20776)]$ |
$1$ |
| 203840.m1 |
203840q1 |
203840.m |
203840q |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{26} \cdot 5^{5} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$3640$ |
$48$ |
$0$ |
$2.775078607$ |
$1$ |
|
$5$ |
$4423680$ |
$2.369625$ |
$65787589563409/10400000$ |
$0.97958$ |
$4.57825$ |
$[0, 1, 0, -2637441, -1649280641]$ |
\(y^2=x^3+x^2-2637441x-1649280641\) |
2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.3, 130.6.0.?, 260.24.0.?, $\ldots$ |
$[(-943, 392)]$ |
$1$ |
| 203840.m2 |
203840q2 |
203840.m |
203840q |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{22} \cdot 5^{10} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$3640$ |
$48$ |
$0$ |
$5.550157214$ |
$1$ |
|
$3$ |
$8847360$ |
$2.716202$ |
$-48743122863889/26406250000$ |
$0.98824$ |
$4.60777$ |
$[0, 1, 0, -2386561, -1975374465]$ |
\(y^2=x^3+x^2-2386561x-1975374465\) |
2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ |
$[(2641, 100744)]$ |
$1$ |
| 203840.n1 |
203840do1 |
203840.n |
203840do |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{18} \cdot 5 \cdot 7^{6} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$3640$ |
$48$ |
$0$ |
$2.949660360$ |
$1$ |
|
$13$ |
$294912$ |
$1.051060$ |
$117649/65$ |
$0.95681$ |
$2.93066$ |
$[0, 1, 0, -3201, -15905]$ |
\(y^2=x^3+x^2-3201x-15905\) |
2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.3, 130.6.0.?, 260.24.0.?, $\ldots$ |
$[(-19, 196), (121, 1176)]$ |
$1$ |
| 203840.n2 |
203840do2 |
203840.n |
203840do |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$3640$ |
$48$ |
$0$ |
$2.949660360$ |
$1$ |
|
$21$ |
$589824$ |
$1.397635$ |
$6967871/4225$ |
$0.89914$ |
$3.26451$ |
$[0, 1, 0, 12479, -113121]$ |
\(y^2=x^3+x^2+12479x-113121\) |
2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ |
$[(139, 2080), (11, 160)]$ |
$1$ |
| 203840.o1 |
203840o1 |
203840.o |
203840o |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{3} \cdot 7^{3} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$0.534292$ |
$7392083392/21125$ |
$0.88315$ |
$2.67649$ |
$[0, 1, 0, -1136, -15086]$ |
\(y^2=x^3+x^2-1136x-15086\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[ ]$ |
$1$ |
| 203840.o2 |
203840o2 |
203840.o |
203840o |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$221184$ |
$0.880866$ |
$-24897088/203125$ |
$0.88375$ |
$2.77301$ |
$[0, 1, 0, -681, -26825]$ |
\(y^2=x^3+x^2-681x-26825\) |
2.3.0.a.1, 140.6.0.?, 182.6.0.?, 260.6.0.?, 1820.12.0.? |
$[ ]$ |
$1$ |
| 203840.p1 |
203840dp4 |
203840.p |
203840dp |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{21} \cdot 5^{6} \cdot 7^{9} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$3.147342056$ |
$1$ |
|
$3$ |
$15925248$ |
$3.023396$ |
$349046010201856969/7245875000$ |
$0.97162$ |
$5.27980$ |
$[0, 1, 0, -46000481, 120068318719]$ |
\(y^2=x^3+x^2-46000481x+120068318719\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 56.6.0.a.1, $\ldots$ |
$[(3866, 5145)]$ |
$1$ |
| 203840.p2 |
203840dp3 |
203840.p |
203840dp |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{24} \cdot 5^{3} \cdot 7^{12} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$6.294684113$ |
$1$ |
|
$1$ |
$7962624$ |
$2.676819$ |
$94376601570889/12235496000$ |
$0.93000$ |
$4.60777$ |
$[0, 1, 0, -2974561, 1738433535]$ |
\(y^2=x^3+x^2-2974561x+1738433535\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 56.6.0.d.1, $\ldots$ |
$[(79899/5, 19719168/5)]$ |
$1$ |
| 203840.p3 |
203840dp2 |
203840.p |
203840dp |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{19} \cdot 5^{2} \cdot 7^{7} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$1.049114018$ |
$1$ |
|
$7$ |
$5308416$ |
$2.474087$ |
$3092354182009/1689383150$ |
$0.94489$ |
$4.32815$ |
$[0, 1, 0, -951841, -84883905]$ |
\(y^2=x^3+x^2-951841x-84883905\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 56.6.0.a.1, $\ldots$ |
$[(-166, 8281)]$ |
$1$ |
| 203840.p4 |
203840dp1 |
203840.p |
203840dp |
$4$ |
$6$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{20} \cdot 5 \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$10920$ |
$96$ |
$1$ |
$2.098228037$ |
$1$ |
|
$3$ |
$2654208$ |
$2.127514$ |
$1408317602329/2153060$ |
$0.89595$ |
$4.26382$ |
$[0, 1, 0, -732321, -241138241]$ |
\(y^2=x^3+x^2-732321x-241138241\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 56.6.0.d.1, $\ldots$ |
$[(3075, 163072)]$ |
$1$ |
| 203840.q1 |
203840dq6 |
203840.q |
203840dq |
$6$ |
$18$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{19} \cdot 5^{18} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$4.888899163$ |
$1$ |
|
$3$ |
$95551488$ |
$4.022224$ |
$16375858190544687071329/9025573730468750$ |
$1.01214$ |
$6.15964$ |
$[0, 1, 0, -1659088321, 25997777790879]$ |
\(y^2=x^3+x^2-1659088321x+25997777790879\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.4, $\ldots$ |
$[(24411, 211680)]$ |
$1$ |
| 203840.q2 |
203840dq5 |
203840.q |
203840dq |
$6$ |
$18$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{20} \cdot 5^{9} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$9.777798327$ |
$1$ |
|
$1$ |
$47775744$ |
$3.675648$ |
$16369358802802724130049/4976562500$ |
$1.01213$ |
$6.15961$ |
$[0, 1, 0, -1658868801, 26005004784415]$ |
\(y^2=x^3+x^2-1658868801x+26005004784415\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.8, $\ldots$ |
$[(1087969/5, 752437728/5)]$ |
$1$ |
| 203840.q3 |
203840dq4 |
203840.q |
203840dq |
$6$ |
$18$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{21} \cdot 5^{6} \cdot 7^{9} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.12.0.1 |
2B, 3Cs |
$32760$ |
$864$ |
$21$ |
$1.629633054$ |
$1$ |
|
$7$ |
$31850496$ |
$3.472916$ |
$932829715460155969/206949435875000$ |
$0.98163$ |
$5.36021$ |
$[0, 1, 0, -63836481, -154179872225]$ |
\(y^2=x^3+x^2-63836481x-154179872225\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 12.72.0-6.a.1.4, 56.6.0.a.1, $\ldots$ |
$[(10299, 529984)]$ |
$1$ |
| 203840.q4 |
203840dq2 |
203840.q |
203840dq |
$6$ |
$18$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{27} \cdot 5^{2} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$4.888899163$ |
$1$ |
|
$3$ |
$10616832$ |
$2.923611$ |
$772531501373731009/15142400$ |
$0.97520$ |
$5.34479$ |
$[0, 1, 0, -59947841, -178672207841]$ |
\(y^2=x^3+x^2-59947841x-178672207841\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.10, $\ldots$ |
$[(30907, 5243392)]$ |
$1$ |
| 203840.q5 |
203840dq3 |
203840.q |
203840dq |
$6$ |
$18$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{24} \cdot 5^{3} \cdot 7^{12} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.12.0.1 |
2B, 3Cs |
$32760$ |
$864$ |
$21$ |
$3.259266109$ |
$1$ |
|
$5$ |
$15925248$ |
$3.126343$ |
$32318182904349889/2067798824000$ |
$0.96161$ |
$5.08516$ |
$[0, 1, 0, -20810561, 34454366239]$ |
\(y^2=x^3+x^2-20810561x+34454366239\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 12.72.0-6.a.1.2, 56.6.0.d.1, $\ldots$ |
$[(3387, 53248)]$ |
$1$ |
| 203840.q6 |
203840dq1 |
203840.q |
203840dq |
$6$ |
$18$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{36} \cdot 5 \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 9.12.0.1 |
2B, 3B |
$32760$ |
$864$ |
$21$ |
$9.777798327$ |
$1$ |
|
$1$ |
$5308416$ |
$2.577034$ |
$189208196468929/834928640$ |
$0.93119$ |
$4.66467$ |
$[0, 1, 0, -3750721, -2786461665]$ |
\(y^2=x^3+x^2-3750721x-2786461665\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 9.12.0.a.1, 12.24.0-6.a.1.2, $\ldots$ |
$[(518081/11, 325120096/11)]$ |
$1$ |
| 203840.r1 |
203840dr2 |
203840.r |
203840dr |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{15} \cdot 5^{2} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$2.675360611$ |
$1$ |
|
$5$ |
$589824$ |
$1.420921$ |
$193100552/29575$ |
$0.89042$ |
$3.36614$ |
$[0, 1, 0, -18881, -862625]$ |
\(y^2=x^3+x^2-18881x-862625\) |
2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? |
$[(-54, 49)]$ |
$1$ |
| 203840.r2 |
203840dr1 |
203840.r |
203840dr |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 5 \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1.337680305$ |
$1$ |
|
$7$ |
$294912$ |
$1.074348$ |
$31554496/3185$ |
$0.72636$ |
$3.04787$ |
$[0, 1, 0, -5161, 127959]$ |
\(y^2=x^3+x^2-5161x+127959\) |
2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? |
$[(2, 343)]$ |
$1$ |
| 203840.s1 |
203840ds2 |
203840.s |
203840ds |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{15} \cdot 5^{6} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$0.888574747$ |
$1$ |
|
$7$ |
$1474560$ |
$1.934099$ |
$50570904392/18484375$ |
$1.00488$ |
$3.82159$ |
$[0, 1, 0, -120801, 9768415]$ |
\(y^2=x^3+x^2-120801x+9768415\) |
2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? |
$[(-201, 5096)]$ |
$1$ |
| 203840.s2 |
203840ds1 |
203840.s |
203840ds |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 5^{3} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1.777149495$ |
$1$ |
|
$5$ |
$737280$ |
$1.587526$ |
$281784327616/79625$ |
$0.86325$ |
$3.79201$ |
$[0, 1, 0, -107081, 13448119]$ |
\(y^2=x^3+x^2-107081x+13448119\) |
2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? |
$[(205, 392)]$ |
$1$ |
| 203840.t1 |
203840dt1 |
203840.t |
203840dt |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$3.708574178$ |
$1$ |
|
$0$ |
$39936$ |
$0.031964$ |
$-134741824/325$ |
$0.77860$ |
$2.19006$ |
$[0, 1, 0, -156, -806]$ |
\(y^2=x^3+x^2-156x-806\) |
52.2.0.a.1 |
$[(61/2, 195/2)]$ |
$1$ |
| 203840.u1 |
203840du1 |
203840.u |
203840du |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{22} \cdot 5^{2} \cdot 7^{10} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$5.609987622$ |
$1$ |
|
$2$ |
$6967296$ |
$2.511463$ |
$-2305248169/878800$ |
$1.00803$ |
$4.41717$ |
$[0, 1, 0, -1155681, -616263425]$ |
\(y^2=x^3+x^2-1155681x-616263425\) |
3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? |
$[(2722, 128115)]$ |
$1$ |
| 203840.u2 |
203840du2 |
203840.u |
203840du |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{30} \cdot 5^{6} \cdot 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$16.82996286$ |
$1$ |
|
$0$ |
$20901888$ |
$3.060768$ |
$1029084842471/832000000$ |
$0.95861$ |
$4.87485$ |
$[0, 1, 0, 8832479, 6369455679]$ |
\(y^2=x^3+x^2+8832479x+6369455679\) |
3.4.0.a.1, 52.2.0.a.1, 156.8.0.?, 168.8.0.?, 2184.16.0.? |
$[(96775026/227, 2011939394625/227)]$ |
$1$ |
| 203840.v1 |
203840s1 |
203840.v |
203840s |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 5 \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$3640$ |
$48$ |
$0$ |
$2.570880049$ |
$1$ |
|
$5$ |
$552960$ |
$1.305521$ |
$153910165504/845$ |
$0.97660$ |
$3.62914$ |
$[0, 1, 0, -55141, 4965435]$ |
\(y^2=x^3+x^2-55141x+4965435\) |
2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.12.0.e.1, 56.12.0-4.b.1.3, $\ldots$ |
$[(86, 931)]$ |
$1$ |
| 203840.v2 |
203840s2 |
203840.v |
203840s |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{14} \cdot 5^{2} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$3640$ |
$48$ |
$0$ |
$1.285440024$ |
$1$ |
|
$7$ |
$1105920$ |
$1.652096$ |
$-9115564624/714025$ |
$0.88863$ |
$3.63512$ |
$[0, 1, 0, -54161, 5151439]$ |
\(y^2=x^3+x^2-54161x+5151439\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 28.12.0-4.a.1.1, 140.24.0.?, $\ldots$ |
$[(67, 1352)]$ |
$1$ |
| 203840.w1 |
203840r2 |
203840.w |
203840r |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{19} \cdot 5^{2} \cdot 7^{7} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1179648$ |
$1.838524$ |
$48587168449/59150$ |
$0.86593$ |
$3.98842$ |
$[0, 1, 0, -238401, 44676799]$ |
\(y^2=x^3+x^2-238401x+44676799\) |
2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? |
$[ ]$ |
$1$ |
| 203840.w2 |
203840r1 |
203840.w |
203840r |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{20} \cdot 5 \cdot 7^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$589824$ |
$1.491951$ |
$24137569/12740$ |
$0.94286$ |
$3.36614$ |
$[0, 1, 0, -18881, 289855]$ |
\(y^2=x^3+x^2-18881x+289855\) |
2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? |
$[ ]$ |
$1$ |
| 203840.x1 |
203840dv2 |
203840.x |
203840dv |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{15} \cdot 5^{2} \cdot 7^{11} \cdot 13^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$2.563236127$ |
$1$ |
|
$1$ |
$83558400$ |
$3.747459$ |
$109804388523871676552/57924691812653575$ |
$1.01485$ |
$5.58016$ |
$[0, 1, 0, -156426881, -223989532481]$ |
\(y^2=x^3+x^2-156426881x-223989532481\) |
2.3.0.a.1, 56.6.0.a.1, 260.6.0.?, 3640.12.0.? |
$[(-43147/2, 3651921/2)]$ |
$1$ |
| 203840.x2 |
203840dv1 |
203840.x |
203840dv |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 5 \cdot 7^{16} \cdot 13^{5} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3640$ |
$12$ |
$0$ |
$5.126472255$ |
$1$ |
|
$3$ |
$41779200$ |
$3.400887$ |
$432135399877565634496/524405413134785$ |
$1.00019$ |
$5.52213$ |
$[0, 1, 0, -123485161, -527652895785]$ |
\(y^2=x^3+x^2-123485161x-527652895785\) |
2.3.0.a.1, 56.6.0.d.1, 130.6.0.?, 3640.12.0.? |
$[(65991, 16694496)]$ |
$1$ |
| 203840.y1 |
203840dx1 |
203840.y |
203840dx |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{2} \cdot 7^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.838909757$ |
$1$ |
|
$2$ |
$860160$ |
$1.498400$ |
$-2401/325$ |
$0.91119$ |
$3.37721$ |
$[0, 1, 0, -3201, -1069601]$ |
\(y^2=x^3+x^2-3201x-1069601\) |
52.2.0.a.1 |
$[(114, 245)]$ |
$1$ |
| 203840.z1 |
203840t1 |
203840.z |
203840t |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{3} \cdot 7^{10} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$520$ |
$48$ |
$0$ |
$2.702938199$ |
$1$ |
|
$5$ |
$1769472$ |
$1.788317$ |
$46689225424/3901625$ |
$0.83837$ |
$3.75836$ |
$[0, 1, 0, -93361, 10125135]$ |
\(y^2=x^3+x^2-93361x+10125135\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 130.6.0.?, 260.24.0.?, $\ldots$ |
$[(121, 784)]$ |
$1$ |
| 203840.z2 |
203840t2 |
203840.z |
203840t |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{6} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$520$ |
$48$ |
$0$ |
$5.405876398$ |
$1$ |
|
$3$ |
$3538944$ |
$2.134888$ |
$13799183324/129390625$ |
$0.89746$ |
$3.99467$ |
$[0, 1, 0, 98719, 46581919]$ |
\(y^2=x^3+x^2+98719x+46581919\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.1, 260.12.0.?, 520.48.0.? |
$[(2865, 154448)]$ |
$1$ |
| 203840.ba1 |
203840u2 |
203840.ba |
203840u |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 5 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$3640$ |
$48$ |
$0$ |
$2.873545626$ |
$1$ |
|
$3$ |
$442368$ |
$1.076588$ |
$1111934656/65$ |
$0.93766$ |
$3.33925$ |
$[0, 1, 0, -16921, -852825]$ |
\(y^2=x^3+x^2-16921x-852825\) |
2.3.0.a.1, 4.6.0.b.1, 56.12.0-4.b.1.3, 130.6.0.?, 260.12.0.?, $\ldots$ |
$[(275, 3920)]$ |
$1$ |
| 203840.ba2 |
203840u1 |
203840.ba |
203840u |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$3640$ |
$48$ |
$0$ |
$5.747091253$ |
$1$ |
|
$1$ |
$221184$ |
$0.730014$ |
$-14526784/4225$ |
$0.88671$ |
$2.67753$ |
$[0, 1, 0, -996, -15170]$ |
\(y^2=x^3+x^2-996x-15170\) |
2.3.0.a.1, 4.6.0.a.1, 28.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ |
$[(2217/4, 101725/4)]$ |
$1$ |
| 203840.bb1 |
203840e1 |
203840.bb |
203840e |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.840232322$ |
$1$ |
|
$4$ |
$122880$ |
$0.525446$ |
$-2401/325$ |
$0.91119$ |
$2.42217$ |
$[0, 1, 0, -65, -3137]$ |
\(y^2=x^3+x^2-65x-3137\) |
52.2.0.a.1 |
$[(31, 160)]$ |
$1$ |